Interactions hôte-microbiote chez l'Omble de fontaine en contexte d'infection à la furonculose (Aeromanas salmonicida subsp. salmonicida)

Authors: Gauthier, Jeff
Advisor: Derome, NicolasCharette, Steve
Abstract: Aeromonas salmonicida subsp. salmonicida is a gram-negative bacterium that causes furunculosis, an opportunistic infection of farmed salmonids. Current treatment methods for furunculosis rely heavily on antibiotic therapy. However, a large proportion of strains of this opportunistic pathogen possesses genes for resistance to the main antibiotics used to cure furunculosis. This thesis discusses in detail the importance of host-microbiota interactions in farmed salmonids and discusses measures that can improve resistance to infections in salmonids. These measures can be large-scale (e.g. setting up a water recirculation system) or small-scale (e.g. administering mutualistic bacteria to fish). It is also illustrated how endogenous brook trout symbionts (ML11Aand TM18) and an exogenous lactic acid bacterium (Bactocell) can be used to inhibit A. salmonicida subsp. salmonicida, stimulate the growth and innate immunity of brook trout, and re-establishing the host-microbiota functional interaction in brook trout infected with furunculosis. When administered daily to live brook trout fry, ML11A, TM18 and Bactocell helped improve several parameters of their physiological state such as mean body weight, Fulton condition factor and plasma lysozyme activity (an indicator of innate immune activity). In the context of an experimental furunculosis infection, brook charr that received daily doses of TM18 and Bactocell had twice less mortality than the "infected-untreated" control group, but only in 13.6 °C water. In water at 15.6 °C, there was no significant reduction in mortality. ML11A did not significantly reduce mortality at either of these two temperatures. Infected brook trout treated with Bactocell had an extremely different gut microbial transcriptome from uninfected and infected fish. Bactocell appears to promote the restoration of nominal host gene expression, but by remodeling the gut microbial transcriptome into a different eubiotic state from that of healthy (uninfected) charr. The brook trout probionts ML11A and TM18 appear to act according to a mechanism opposite to that of Bactocell, i.e. by modulating the expression of the host genes involved in the response to infection, without altering the microbiota transcriptome (for all tissues combined). Interesting perspectives for the work of this thesis are also explored like combining probiotic strains in one or more treatments, assessing the cross-reactivity of these with other treatments (conventional or experimental), or considering the contribution of different environmental conditions to the brook charr-microbiota system.
Document Type: Thèse de doctorat
Issue Date: 2021
Open Access Date: 20 June 2022
Permalink: http://hdl.handle.net/20.500.11794/73602
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
Description SizeFormat 
37077.pdf2.84 MBAdobe PDFThumbnail
View/Open
All documents in CorpusUL are protected by Copyright Act of Canada.