Impact de la vitamine A, D, du cuivre et du colostrum bovin sur la croissance et le développement du porcelet pendant la période péri-sevrage

Authors: Galiot, Lucie
Advisor: Guay, Frédéric; Matte, Jean-Jacques
Abstract: Introduction of hyperprolific sows have impacted the pre- and postnatal development of piglets by increasing within-litter birth weight heterogeneity, vitality, and growth. Consequently, distinct populations of piglets of low birth weights have arised with unfavorable nutritional status and diminished the growth potential with growth delays until slaughter. Bovine colostrum has been considered as a rich source of nutrients and biological factors for piglet's growth and development. In addition, several micronutrients essential for development, including vitamins A, D and copper have low perinatal transfer. It has been shown in several studies that supplementation in vitamins A, D and copper, and bovine colostrum improve micronutrients, oxidative and immunity status, and microbiota establishment and ultimately performances. However, studies only monitored the supplementation of one of these micronutrients on one aspect of health. Moreover, there was a lack of knowledge on optimal supplementation sources and routes to enhance health parameters. The first study aimed to determine the optimal routes and sources of the chosen micronutrients on piglet's health and robustness. This study showed that micronutrients status could be improved via supplementation of piglets or sows with a superior response with direct supplementation of piglets. The form of oral supplementation for vitamin A, D and Cu were, respectively, retinol acetate, 25-OH-D3 and copper yeast. Piglets were also exposed to UVB light. In the two other studies, those supplements were tested with bovine colostrum to assess their effects on micronutrient status, oxidative stress, intestinal microbiota and lastly growth performances. The second experiment was conducted in commercial conditions and showed that vitamin D with UVB exposition did improve the vitamin D status at weaning. Simultaneously, bovine colostrum increased growth performances until post-weaning and modulated the intestinal microbiota by decreasing potential pathogenic bacteria. The last experiment was conducted in an experimental farm and supplementation did improve micronutrient status for all three micronutrients until weaning but the improvement did not last beyond the end of supplementation. However, supplementation did not reduce the weaning stress including the oxidative stress and low weight piglets did not benefit from the supplementations. To conclude, these results highlight the efficacy of improving the micronutrients status in piglets during lactation but did not mitigate the stress from weaning. Directly oral supplementation of piglets was more efficient than oral supplementation of sows. Bovine colostrum increased growth performance long after the end of supplementation and after weaning. Lastly, contrary to what was expected, copper status dropped sharply postweaning despite dietary supplementation of copper. The field of micronutrient metabolism in swine production merits further attention to understand in dept the mecanisms at play on a longterm period of life.
Document Type: Thèse de doctorat
Issue Date: 2021
Open Access Date: 9 August 2021
Permalink: http://hdl.handle.net/20.500.11794/69903
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
Description SizeFormat 
36654.pdf2.46 MBAdobe PDFThumbnail
View/Open
All documents in CorpusUL are protected by Copyright Act of Canada.