Fingerprint-based localization in massive MIMO systems using machine learning and deep learning methods

Auteur(s): Moosavi, Seyedeh Samira
Direction de recherche: Fortier, Paul; Chouinard, Jean-Yves
Résumé: À mesure que les réseaux de communication sans fil se développent vers la 5G, une énorme quantité de données sera produite et partagée sur la nouvelle plate-forme qui pourra être utilisée pour promouvoir de nouveaux services. Parmis ceux-ci, les informations de localisation des terminaux mobiles (MT) sont remarquablement utiles. Par exemple, les informations de localisation peuvent être utilisées dans différents cas de services d'enquête et d'information, de services communautaires, de suivi personnel, ainsi que de communications sensibles à la localisation. De nos jours, bien que le système de positionnement global (GPS) des MT offre la possibilité de localiser les MT, ses performances sont médiocres dans les zones urbaines où une ligne de vue directe (LoS) aux satellites est bloqué avec de nombreux immeubles de grande hauteur. En outre, le GPS a une consommation d'énergie élevée. Par conséquent, les techniques de localisation utilisant la télémétrie, qui sont basées sur les informations de signal radio reçues des MT tels que le temps d'arrivée (ToA), l'angle d'arrivée (AoA) et la réception de la force du signal (RSS), ne sont pas en mesure de fournir une localisation de précision satisfaisante. Par conséquent, il est particulièrement difficile de fournir des informations de localisation fiables des MT dans des environnements complexes avec diffusion et propagation par trajets multiples. Les méthodes d'apprentissage automatique basées sur les empreintes digitales (FP) sont largement utilisées pour la localisation dans des zones complexes en raison de leur haute fiabilité, rentabilité et précision et elles sont flexibles pour être utilisées dans de nombreux systèmes. Dans les réseaux 5G, en plus d'accueillir plus d'utilisateurs à des débits de données plus élevés avec une meilleure fiabilité tout en consommant moins d'énergie, une localisation de haute précision est également requise. Pour relever un tel défi, des systèmes massifs à entrées multiples et sorties multiples (MIMO) ont été introduits dans la 5G en tant que technologie puissante et potentielle pour non seulement améliorer l'efficacité spectrale et énergétique à l'aide d'un traitement relativement simple, mais également pour fournir les emplacements précis des MT à l'aide d'un très grand nombre d'antennes associées à des fréquences porteuses élevées. Il existe deux types de MIMO massifs (M-MIMO), soit distribué et colocalisé. Ici, nous visons à utiliser la méthode basée sur les FP dans les systèmes M-MIMO pour fournir un système de localisation précis et fiable dans un réseau sans fil 5G. Nous nous concentrons principalement sur les deux extrêmes du paradigme M-MIMO. Un grand réseau d'antennes colocalisé (c'est-à-dire un MIMO massif colocalisé) et un grand réseau d'antennes géographiquement distribué (c'est-à-dire un MIMO massif distribué). Ensuite, nous ex trayons les caractéristiques du signal et du canal à partir du signal reçu dans les systèmes M-MIMO sous forme d'empreintes digitales et proposons des modèles utilisant les FP basés sur le regroupement et la régression pour estimer l'emplacement des MT. Grâce à cette procédure, nous sommes en mesure d'améliorer les performances de localisation de manière significative et de réduire la complexité de calcul de la méthode basée sur les FP.
Type de document: Thèse de doctorat
Date de publication: 2021
Date de la mise en libre accès: 5 juillet 2021
Lien permanent: http://hdl.handle.net/20.500.11794/69511
Université décernant le diplôme: Université Laval
Collection :Thèses et mémoires

Fichier(s) :
Description TailleFormat 
37170.pdf3.26 MBAdobe PDFMiniature
Télécharger
Tous les documents dans CorpusUL sont protégés par la Loi sur le droit d'auteur du Canada.