Électro-activation de solutions aqueuses de lactate et ascorbate de calcium et étude de leurs effets antibactériens sur les cellules végétatives et spores de Bacillus cereus ATCC 14579

Authors: Cayemitte, Pierre Emerson
Advisor: Aider, MohammedRaymond, Philippe.
Abstract: Since the popularization of concepts like globalization, the agri-food sector has experienced a huge expansion and a ceaseless craze for the marketing of food between the peoples worldwide. This phenomenon, contributing significantly to the economic growth of the markets, is not without risk, however. Meanwhile, microbiological hazards, including pathogens, are carried through food matrices and travel from one country to another, increasing the risk of contamination for consumers. Consequently, we are also witnessing an increase in cases of food allergies, foodborne illnesses and outbreaks, with etiological agents coming from all over the world. Thus, regulatory organisms such as Canadian Food Inspection Agency (CFIA), Health Canada, United States Food and Drug Administration (USFDA) or competent international authorities like Food and Agriculture Organization of the United Nations (FAO) and World Health Organization (WHO) are stepping up efforts to put in place regulatory standards and policies in order to help the food industry to strengthen controls from the processing to the marketing of foods. Microbiological hazards from pathogens like Bacillus cereus remain a major public health risk that must be controlled in order to ensure consumers protection. Although many techniques of control (e.g., food additives, high hydrostatic pressure, ionizing radiation, thermal processes, etc.) have been developed and used to ensure the safety and security of foods, in some instance this has not allowed to produce food products that are completely free of bacteria responsible for degradation/spoilage of food and pathogens causing food poisoning as is the case with B. cereus. Indeed, this pathogenic bacterium is ubiquitous, aerobic and facultative anaerobic. It is able to produce, in a wide variety of foods and ingredients such as spices, highly resistant spores as well as different types of toxins that can cause diarrhea, nausea, vomiting, and even death. In this context, and given the great difficulty in controlling the contamination of food caused by this pathogen, the general objective of this research was to use the electro-activation technology, an applied branch of electrochemistry which is particularly interested in the reactivity of aqueous solutions, as an alternative and potentially effective method to fight against B. cereus in order to produce safer foods with high nutritional and organoleptic values. To achieve this, aqueous solutions of organic acid salts of calcium lactate, calcium ascorbate and their equimolar mixture were electroactivated in a reactor subjected to a direct electric current with intensities of 250, 500 and 750 mA for a maximum time of 30 minutes in a bid to produce the respective conjugated organic acids, lactic acid and ascorbic acid. In the first part of this research work, the physicochemical characteristics (e.g.,pH, titratable acidity, pKa) of the electro-activated solutions (EAS) were studied and their molecular profiles compared to those of respective standard acids using different techniques (e.g., FTIR, HPLC, DSC, DPPH), which helped to confirm the production of conjugated organic acids from the respective salts used. These EAS had a very low pH, a high titratable acidity, particularly for the calcium ascorbate and the mixture. In addition, a high antioxidant activity was observed for the electro-activated calcium ascorbate solution and the mixture. In the second part of the study, the EAS treated at 250, 500 and 750 mA for 10,20 and 30 min were selected to be brought into contact with vegetative cells of Bacilluscereus ATCC 14579 under model conditions (direct contact) in order to evaluate their antimicrobial effects on this pathogen. The cells were tested in direct contact with the EAS for 5, 30 and 60 seconds. The same treatment was also carried out by direct contact with standard organic acids (lactic, ascorbic) for 5, 30, 60, and 120 seconds in order to make comparisons. The EAS and the corresponding standard organic acids had the same titratable acidity values. There after, the cells were observed under microscope (Methylene blue and fluorescence) to evaluate the inhibitory / destructive effects of these solutions. Also, the EAS were diluted with distilled water to obtain solutions with 10 to 90% of the initial titratable acidity (strength) to be tested against B. cereus cells. The results demonstrated that all the EAS made were highly effective against the vegetative cells of B.cereus. Also, even at dilution rates averaging 20% of the EAS initial strength, the antimicrobial effect was very high for the different solutions. In addition, the microscopic observation of B. cereus has confirmed the lethal effects of EAS. In this part with the vegetative B. cereus cells, the efficacy of the EAS was estimated to a reduction of 4–7 log CFU/mL. In addition, the antibacterial power of the EAS has been shown to be significantly higher than that of the standard (conventional) lactic and ascorbic acids. In the third part of the study, electro-activated solutions of calcium lactate, calcium ascorbate and their equimolar mixture at 750 mA for 30 min were selected and used against the spores of Bacillus cereus ATCC 14579 under model conditions and in fresh Atlantic salmon. The treated spores were analyzed using scanning and transmission electron microscopes to evaluate the sporicidal effects of EAS. The results obtained clearly showed a great sporicidal power of the EAS used on B. cereus spores with a reduction of 7 to 9 log using an initial spore population of 10⁹ CFU/mL, depending on the conditions assessed; namely: in direct contact (2–30 min), in salmon used as a food matrix (2–7 min), as well as in combination with moderate heat of 60, 70, 80 and 90 ℃ for 0.5–2 min. Also, it was observed that the sporicidal capacity of the EAS increased with temperature and contact time. Scanning and transmission electron microscopy showed that the EAS could cause the total destruction of B. cereus cells, including perforation of the membranes (cortex and coat), as well as the reflux of different components of the structure of B. cereus spores. Taking into account the results obtained in this study, we can conclude that the electro-activated solutions made with calcium lactate, calcium ascorbate and their mixture, especially those electro-activated at 750 mA–30 min, could be of a great contribution to reinforce the capacity of the food industry to control B. cereus ATCC 14579 and produces safer foods for the consumer.
Document Type: Thèse de doctorat
Issue Date: 2021
Open Access Date: 1 June 2021
Permalink: http://hdl.handle.net/20.500.11794/69246
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
Description SizeFormat 
37203.pdf9.53 MBAdobe PDFThumbnail
All documents in CorpusUL are protected by Copyright Act of Canada.