Sulfur-rich chalcogenide claddings for athermal and high-Q silicon microring resonators

Élément Dublin CoreValeurLangue
dc.contributor.authorJean, Philippe-
dc.contributor.authorDouaud, Alexandre-
dc.contributor.authorThibault, Tristan-
dc.contributor.authorLaRochelle, Sophie-
dc.contributor.authorMessaddeq, Younès-
dc.contributor.authorShi, Wei-
dc.date.accessioned2021-04-16T16:05:16Z-
dc.date.available2021-04-16T16:05:16Z-
dc.date.issued2021-02-26-
dc.identifier.issn2159-3930fr
dc.identifier.urihttp://hdl.handle.net/20.500.11794/68800-
dc.description.abstractHeterogeneous integration of materials with a negative thermo-optic coefficient is a simple and efficient way to compensate the strong detrimental thermal dependence of siliconon-insulator devices. Yet, the list of materials that are both amenable for photonics fabrication and exhibit a negative TOC is very short and often requires sacrificing loss performance. In this work, we demonstrate that As₂₀S₈₀ chalcogenide glass thin-films can be used to compensate silicon thermal effects in microring resonators while retaining excellent loss figures. We present experimental characterization of the glass thin-film and of fabricated hybrid microring resonators at telecommunication wavelengths. Nearly athermal operation is demonstrated for the TM polarization with an absolute minimum measured resonance shift of 5.25 pm · K−1, corresponding to a waveguide effective index thermal dependence of 4.28 × 10−⁶ RIU · K −1. We show that the thermal dependence can be controlled by changing the cladding thickness and a negative thermal dependence is obtained for the TM polarization. All configurations exhibit unprecedented low loss figures with a maximum measured intrinsic quality factor exceeding 3.9 × 10⁵, corresponding to waveguide propagation loss of 1.37 dB · cm−1. A value of−4.75 ± 0.75 × 10−⁵ RIU · K−1 is measured for the thermo-optic coefficient of As₂₀S₈₀ thinfilms.fr
dc.languageengfr
dc.publisherOSA Pub.fr
dc.titleSulfur-rich chalcogenide claddings for athermal and high-Q silicon microring resonatorsfr
dc.typeCOAR1_1::Texte::Périodique::Revue::Contribution à un journal::Article::Article de recherchefr
dcterms.bibliographicCitationOptical materials express, Vol. 11 (3), 913-925 (2021)fr
dc.identifier.doi10.1364/OME.421814fr
dc.subject.rvmMicrorésonateurs en anneaufr
dc.subject.rvmSilicium sur isolantfr
dc.subject.rvmCouches minces -- Propriétés optiquesfr
dc.subject.rvmChalcogénuresfr
rioxxterms.versionVersion of Recordfr
rioxxterms.version_of_recordhttps://doi.org/10.1364/OME.421814fr
rioxxterms.projectSTPGP 494358-16fr
rioxxterms.project.funder_nameNatural Sciences and Engineering Research Council of Canadafr
ali.license_refAttribution CC BYfr
ali.license_ref.start_date2021-02-26fr
bul.rights.periodeEmbargo0 moisfr
Collection :Articles publiés dans des revues avec comité de lecture

Fichier(s) :
Description TailleFormat 
JeanP_Sulphur_2021.pdf3.57 MBAdobe PDFMiniature
Télécharger
Tous les documents dans CorpusUL sont protégés par la Loi sur le droit d'auteur du Canada.