Insertion d’une mutation protectrice pour la maladie d’Alzheimer dans le gène de la protéine précurseur de l’amyloïde via le système CRISPR/Cas9

Authors: Guyon, Antoine
Advisor: Tremblay, Jacques-P.
Abstract: Alzheimer’s disease (AD) is the most common form of dementia in the world, withnearly fifty million people affected currently. The most common symptoms of this diseaseare memory loss, difficulties in task management, and temporal and spatial confusions. There is currently no treatment for this disease. The amyloid precursor protein (APP) is usually cut by the alpha-secretase enzyme; however, abnormal cleavage by the beta-site APP cleaving enzyme 1 (BACE1) leads to the formation of beta-amyloid peptides. These peptides in turn forms aggregates, which accumulate as plaques in the brains of Alzheimer patients. Many non-silent APP mutationscause changes to the amino acid composition of the protein and result in increased plaque accumulation. These mutations are called familial forms of Alzheimer’s disease (FAD).However, one of these mutations (Icelandic A673T mutation) has been shown to confer aprotection against the on set and development of AD. This mutation of a single mutation inexon 16 changes an alanine into a threonine and has been shown to reduce the cleavage ofthe APP protein by BACE1 by 40%.This kind of single point mutation is the perfect target for the newly discoveredCRISPR/Cas9 technology, which opens new perspectives for the development of preventiveor curative treatments for genetic diseases and in our case Alzheimer’s. The Cas9endonuclease is a powerful tool for the modification of genetic data. The protein has been shown to cut double-stranded DNA with the help of a guide RNA (gRNA) to target a specified sequence adjacent to a PAM (protospacer adjacent motif). The base CRISPRsystem has been coopted by many different research teams; one of which used the technology to develop a technique they called base editing. This technique allows researchers toexchange cytidine bases for thymine and guanine bases for adenine with a strong accuracy. The first article of this thesis aims to demonstrate that the addition of the A673Tmutation in codominance with another pathological form of AD may have beneficial effectson the reduction of beta-amyloid peptides in patients’ brains. To determine if the mutationwas protective, plasmids carrying the A673T mutation along with another random FADmutation were used. Ultimately, we confirmed the beneficial effect for many forms of FAD,in particular the London V717I mutation demonstrated the greatest reduction in beta amyloidproteins. The second article of this thesis deals with the insertion of the A673T mutation by theCRISPR/Cas9 derived system, base editing. Several base editor complexes were compared and optimized to achieve the most effective and accurate genome modification possible. A candidate was selected after testing on HEK293T cells and SH-SY5Y neuroblastoma. The third part of this manuscript presents the results obtained when using lentiviraland AAV vectors to infect induced human and mouse neurons with a base editor complex and harvested mouse neurons with FAD forms. This whole approach has opened up an avenue for a potential therapy for Alzheimer’sdisease.
Document Type: Thèse de doctorat
Issue Date: 2021
Open Access Date: 12 April 2021
Permalink: http://hdl.handle.net/20.500.11794/68776
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
Description SizeFormat 
37108.pdf4.44 MBAdobe PDFThumbnail
View/Open
All documents in CorpusUL are protected by Copyright Act of Canada.