Contribution to the design of steel I and H-sections members by means of the Overall Interaction Concept

Authors: Gérard, Lucile
Advisor: Boissonnade, Nicolas; Annan, Charles-Darwin
Abstract: Design of steel profiles is generally ruled by the occurrence of local and global instabilities which havebeen of major interest for many years now to reduce costs within steel applications. Closer estimate of actual ultimate strengths shall allow for some savings in practice since some structures typically designed through conservative rules provided by standards such as the Eurocode shall be lightened. The designguide lines currently suggested in codes to predict local and global strengths of I and H-shapes are broadly known to exhibit some conservatism and researchers have been directing their efforts towards an optimisation of such design. Accordingly, the O.I.C. (Overall Interaction Concept) which was first developed for tubular sections,provides a general approach for steel design with a common and straightforward formulation for all load cases and cross-section’s geometries. O.I.C. design equations are derived based on strengths mostly achieved by means of full non-linear analyses since F.E. simulations can provide accurate predictions of actual ultimate strengths and continuously account for the Resistance – Instability interaction. Through the present thesis, design formulae for I and H-shapes were developed as part of the development of the O.I.C. Subsequently to an extensive numerical study through a F.E. model whose reliability was first established by means of comparisons with tests data, reasonable local geometrical imperfections as well as appropriate residual stresses patterns were chosen so that reliable ultimate strengths could be reached with the F.E.models. Then, parametric studies were carried out on short members subject to simple load cases such assimple axial force, major-axis bending or minor-axis bending and combined loadings. Observations on local strengths tendencies allowed the determination of key parameters so that O.I.C. based design proposals predicting the local strengths of hot-rolled and welded I and H-sections could be established. Numerical investigations then focused on the member strength of I and H-sections prone to suffer fromLateral Torsional Buckling so that an accurate design proposal including local/global coupling effects waseventually derived. Accuracy showed great benefits from these O.I.C. based design proposals compared to Eurocode rules,especially for slender sections. The design for which coherence and accuracy was preferred to simplicity has shown drastic efficiency for simple and combined load cases. Owing to the complex strength tendencies observed for sections subject to combined loadings, no consequent simplification of theproposals could be achieved without losing the benefits in accuracy compared to the Eurocode one. This work shall be considered as a first step towards a more coherent and accurate design for steel I andH-sections since further work may be needed towards a simplification of such proposal
Document Type: Thèse de doctorat
Issue Date: 2020
Open Access Date: 15 February 2021
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
Description SizeFormat 
35911.pdf38.79 MBAdobe PDFThumbnail
All documents in CorpusUL are protected by Copyright Act of Canada.