Customer profitability forecasting using fair boosting : an application to the insurance industry

Auteur(s): St-Jean, Alex
Direction de recherche: Marchand, Mario
Résumé: La prévision de la profitabilité du client, ainsi que la tarification, sont des pièces centrales dans le monde des sciences actuarielles. En utilisant des données sur les historiques des clients et en optimisant des modèles statistiques, les actuaires peuvent prévoir, dans une certaine mesure, le montant qu’un client réclamera durant une certaine période. Cependant, ces modèles utilisent souvent des données sensibles reliées au client qui sont considérées comme étant des facteurs de risque très importants dans la prédiction de pertes futures. Ceci est considéré comme étant légal dans plusieurs jurisdictions tant que leur utilisation est supportée par des données actuarielles, car ces attributs permettent aux clients d’obtenir une prime plus précise. Toutefois, comme soulevé dans la littérature récente en apprentissage machine, ces modèles peuvent cacher des biais qui les rendent discriminants envers certains groupes. Dans ce mémoire, nous proposons un modèle de prévision de la profitabilité du client utilisant des avancées récentes provenant du domaine de l’apprentissage machine pour assurer que ces algorithmes ne discriminent pas disproportionnellement envers certains sous-groupes faisant partie de l’intersection de plusieurs attributs protégés, tel que l’âge, la race, la religion et l’état civil. En d’autres mots, nous prédisons équitablement la prime théorique de n’importe quel client en combinant l’état de l’art en prédiction de pertes en assurance et appliquant certaines contraintes d’équité sur des modèles de régression. Suite à l’exécution de l’estimation de la profitabilité du client sur plusieurs jeux de données réels, les résultats obtenus de l’approche proposée sont plus précis que les modèles utilisés traditionnellement pour cette tâche, tout en satisfaisant des contraintes d’équité. Ceci montre que cette méthode est viable et peut être utilisée dans des scénarios concrets pour offrir des primes précises et équitables aux clients. Additionnellement, notre modèle, ainsi que notre application de contraintes d’équité, s’adapte facilement à l’utilisation d’un grand jeu de données qui contiennent plusieurs sous-groupes. Ceci peut être considérable dans le cas où un critère d’équité intersectionnel doit être respecté. Finalement, nous notons les différences entre l’équité actuarielle et les définitions d’équité provenant du monde de l’apprentissage machine, ainsi que les compromis reliés à ceux-ci.
Type de document: Mémoire de maîtrise
Date de publication: 2021
Date de la mise en libre accès: 8 février 2021
Lien permanent: http://hdl.handle.net/20.500.11794/68083
Université décernant le diplôme: Université Laval
Collection :Thèses et mémoires

Fichier(s) :
Description TailleFormat 
36951.pdf1.45 MBAdobe PDFMiniature
Télécharger
Tous les documents dans CorpusUL sont protégés par la Loi sur le droit d'auteur du Canada.