The type II-A CRISPR-Cas system of streptococcus mutans : characterisation of bacteriophage-insensitive mutan(t)s

Authors: Mosterd, Cas
Advisor: Moineau, Sylvain
Abstract: Bacteria are exposed to the constant threat of viral predation. To defend themselves, bacteria have developed a wide variety of different mechanisms. One of these mechanisms is CRISPR-Cas (clustered regularly interspaced palindromic repeats), an adaptive immune mechanism found in approximately 45% of bacteria. A unique feature of CRISPR-Cas systems compared to other antiviral defence mechanisms is that it has a memory. The system is capable of remembering previous viral encounters and protects the bacterial host from re-infection by the same or highly-related viruses. This memory is due to the acquisition of virus-derived genome fragments called spacers. Despite common acquisition of novel spacers in nature, and thereby the emergence of new immunity, acquisition of new spacers under laboratory conditions has been rarely observed. One of the few exceptions is Streptococcus mutans. In this study, the interactions between S. mutans strain P42S and its virulent bacteriophage M102AD are investigated in detail. In addition, possible applications of the CRISPR-Cas system are analysed. The first objective of this thesis was to characterise the CRISPR-Cas system of S. mutans P42S on the molecular level and to determine its role in antiviral defence. The second objective was to determine the potential of the Cas9 protein of S. mutans P42S (SmutCas9) in genome editing. S. mutans P42S possesses a type II-A CRISPR-Cas system. Although this is arguably the best studied system, the one found in the strain S. mutans P42S has several features that makes it stand out. It recognises a PAM different from what was known for this species, multiple spacer acquisitions are frequent, and this appears to be partially due to priming. Although CRISPR-Cas plays a role in antiviral defence, there are additional antiviral defence mechanisms that protect S. mutans against phages. Adsorption resistance is one of them, although additional unidentified antiviral defence mechanisms are likely involved. Finally, SmutCas9 has been shown functional in editing of viral genomes and appears to be a candidate for human genome editing.
Document Type: Thèse de doctorat
Issue Date: 2021
Open Access Date: 8 February 2021
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
Description SizeFormat 
36916.pdf3.56 MBAdobe PDFThumbnail
All documents in CorpusUL are protected by Copyright Act of Canada.