Application combinée du biochar de pin et des biosolides mixtes de papetières : une option pour améliorer leur efficacité agronomique

Authors: Manirakiza, Eric
Advisor: Karam, Antoine; Ziadi, Noura; Antoun, Hani
Abstract: Paper mill biosolids (PB) supply plant nutrients and improve soil chemical and biological properties. However, soil acidification, metal mobility and nutrient leaching may present challenges in soil receiving PB. The application of biochar can increase soil pH and nutrient and metal retention, which helps prevent metal toxicity and nutrient leaching and improves the efficient fertilizer use. To our knowledge, the effect of co-applying PB and biochar on the properties of Quebec agricultural soils has not yet been evaluated and could be an interesting way to improve their agronomic efficiency. The objective of this thesis was to determine how co-applying PB and biochar affects soil chemical and biological properties. Specifically, this thesis evaluated the effect of amending two acidic soils, a clay and sandy loam, with two PB types varying in carbon (C)/nitrogen (N) ratio (PB1, C/N=24; and PB2, C/N=13) and pH (PB1, pH = 7.80; and PB2, pH = 4.51) co-applied with three rates (0%, 2.5%, and 5% w/w) of pine (Pinus strobus L.) biochar produced at 700 °C. A 224 days microcosm incubation study was conducted under controlled conditions at 25°C, using a randomized complete block design with three replicates. The results showed that the co-application of biochar and PB increased soil pH, microbial activity and biomass, and total C and available potassium (K) concentrations, and decreased mineral N, and available copper (Cu) and iron (Fe) concentrations compared to the application of PB only. The effect of the co-application of biochar and PB depended on biochar rate, PB type, and incubation time. This thesis showed that co-applying biochar and PB can be more beneficial to agricultural soils than application of PB alone by increasing organic matter, supplying nutrients, improving NO3-N retention, preventing metal toxicity by raising pH and improving the potential of nutrient cycling by promoting microbial activity and biomass.
Document Type: Thèse de doctorat
Issue Date: 2021
Open Access Date: 8 February 2021
Permalink: http://hdl.handle.net/20.500.11794/68079
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
Description SizeFormat 
36873.pdf1.54 MBAdobe PDFThumbnail
View/Open
All documents in CorpusUL are protected by Copyright Act of Canada.