Imagerie de neurones en profondeur par fibre optique avec champ de vue variable et imagerie à grand champ volumétrique rapide avec sectionnement optique HiLo

Authors: Côté, François
Advisor: Côté, DanielLévesque, Martin
Abstract: Imaging cells and axons in deep brain with minimal damage while keeping a sizable field of view remains a challenge, because it is difficult to optimize one without sacrificing the other. We propose a scanning method reminiscent of laser scanning microscopy to get a reasonable field of view with minimal damage deep in the brain. By using micro-optics at the tip of our 125 µm-diameter singlemode fiber inside a 250 µm capillary, we can create a focal spot on the side of the fiber at a distance of approximately 60 µm. The focal spot has a 2 µm diameter and can be scanned at up to 30 hertz by a custom scanning device over a 90 degree angular sweep on a single line. A piezoelectric actuator moves up and down the fiber to achieve a cylindrical scanning pattern. By having this side illumination, there is no need for surgical exposure of the tissue, making our method simple and easy to achieve. The field of view is controlled by the angular and vertical sweeps, unrelated to the fiber diameter. Furthermore, by modifying the length of the grin lens, we could directly increase or decrease the field of view of our optical system, without any change on the probe diameter. We have succeeded in imaging microglia in the midbrain of a CX3CR1-GFP mouse. The system is also ready for calcium imaging on single pixel lines. Imaging whole mouse brains can provide a wealth of information for understanding neuronal development at both the microscopic and macroscopic scale. Furthermore, visualizing entire brain samples allow us to better conceptualize how different diseases affect the brain as a whole, rather than only investigating a certain structure. Currently, two main challenges exist in achieving whole mouse brain imaging: 1) Long image acquisition sessions (on the order of several hours) and 2) Big data creation and management due to the large, high-resolution image volumes created. To overcome these challenges, we present a fast 1-photon system with a slightly decreased resolution allowing whole brain, optically sectioned imaging on the order of minutes by using a mathematical algorithm termed “HiLo”. Our large field of view (25 mm2 ) allows us to see an entire newborn mouse brain in a single snapshot with a resolution of about 2 µm in lateral direction and 4 µm in axial direction. This resolution still allows visualization of cells and some large axonal projections. This technological advancement will first and foremost allow us to rapidly image large volume samples and store them in a smaller format without losing the integral information, which is mainly stained-cell quantity and location. Secondly, the design will allow for increased successful high-resolution imaging by screening ...
Document Type: Mémoire de maîtrise
Issue Date: 2020
Open Access Date: 13 March 2020
Permalink: http://hdl.handle.net/20.500.11794/38294
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
Description SizeFormat 
35578.pdf21.79 MBAdobe PDFThumbnail
View/Open
All documents in CorpusUL are protected by Copyright Act of Canada.