Régulation de l'inflammation par les lipides bioactifs : interactions biosynthétiques et fonctionnelles entre les endocannabinoïdes et les éicosanoïdes

Authors: Turcotte, Caroline
Advisor: Flamand, NicolasBlanchet, Marie-Renée
Abstract: Chronic inflammatory diseases are an important health burden worldwide. The currently available treatments alleviate pain and inflammation, but their numerous adverse effects make their long term use difficult. Therefore, the scientific community is studying the anti-inflammatory potential of mediators such as endocannabinoids. Endocannabinoids are endogenous lipids that activate the cannabinoid receptors, namely CB1 and CB2. In doing so, they regulate various physiological functions and cognitive processes functions such as appetite, adipogenesis and nociception. The two best-characterized endocannabinoids, 2-AG and AEA, also exert effects on immune cell functions, leading to the modulation of immunity and inflammation. They do so by activating the CB2 receptor, which is expressed in the periphery, notably on immune cells. Notably, it was shown that mice lacking the CB2 receptor display an exacerbated inflammatory phenotype, suggesting that CB2 activation by endocannabinoids is anti-inflammatory. However, the biological effects of endocannabinoids are far more complex, given that they can be metabolized into a wide variety of bioactive lipids. The main degradation pathway for 2-AG and AEA is their hydrolysis into arachidonic acid (AA), a fatty acid that acts a precursor for the biosynthesis of several pro-inflammatory eicosanoids such as leukotriene B4 and prostaglandin E2. They can also be directly metabolized by eicosanoid-biosynthetic enzymes, which generates mediators such as glyceryl-prostaglandins (PG-Gs). Therefore, endocannabinoids can generate an intriguing profile of pro- and anti-inflammatory effects, depending on the balance between their catabolic pathways and receptor activation. Therapeutic strategies aiming at blocking endocannabinoid hydrolysis to amplify their anti-inflammatory effects have been extensively studied. However, most of these studies were conducted in animals. Endocannabinoid metabolism by human leukocytes, as well as the effects of their metabolites on human leukocytes functions, are poorly defined. Although the data obtained from animal models is promising, these mechanisms must be characterized in humans before they can be manipulated to treat inflammatory diseases. Our first aim was to characterize endocannabinoid biosynthetic and hydrolytic pathways in human leukocytes. We documented the expression of several 2-AG hydrolases in human neutrophils, eosinophils, monocytes, lymphocytes and alveolar macrophages. The data we obtained underscored that each cell type expresses several 2-AG hydrolases, and that the selective inhibitors that are currently available only partially block 2-AG degradation by leukocytes. Our results also show that human leukocytes are experts at hydrolyzing 2-AG, a finding that allowed us to establish a novel 2-AG biosynthetic pathway in human leukocytes. In the presence of 2-AG hydrolysis inhibitors, neutrophils, eosinophils and monocytes stimulated with AA produced 2-AG in amounts ~ 1000 times greater than those previously reported. They also converted other polyunsaturated fatty acids into their glycerol-containing endocannabinoid counterparts. We showed that this endocannabinoid biosynthetic pathway depends on fatty acid reacylation into membrane phospholipids, and that their subsequent metabolism into endocannabinoid likely requires the production of a lysophosphatidic acid intermediate. This study is the first one to report a significant endocannabinoid synthesis by human leukocytes, and to show that this biosynthesis is independent from the classical 2-AG biosynthetic pathway. We also aimed to characterize the impact of 2-AG and PG-Gs on human leukocyte functions. We showed that in the presence of IL-5, a cytokine involved in the eosinophilic inflammation found in asthma, 2-AG induces eosinophil migration. This requires the activation of the CB2 receptor, as well as 2-AG hydrolysis into AA to produce 15-lipoxygenase metabolites. This underscores that 2-AG hydrolysis by eosinophils allows for the synthesis of mediators that have pro-inflammatory effects, and that blocking this hydrolysis in vivo may be beneficial. We also studied the biological effects of PGE2-G and found that it inhibits several effector functions of human neutrophils. This inhibitory effect requires PGE2-G hydrolysis into PGE2 by neutrophils, and the activation of the EP2 receptor on their surface. Our work will allow a better understanding of how endocannabinoid hydrolysis should be blocked in humans, and of the biological effects that will result from this inhibition. The goal is to develop new treatments against chronic inflammatory diseases, which will enhance the analgesic and anti-inflammatory effects of endocannabinoids while limiting their deleterious effects.
Document Type: Thèse de doctorat
Issue Date: 2019
Open Access Date: 18 December 2019
Permalink: http://hdl.handle.net/20.500.11794/37592
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
Description SizeFormat 
35445.pdf5.15 MBAdobe PDFThumbnail
All documents in CorpusUL are protected by Copyright Act of Canada.