Multi-criteria optimization algorithms for high dose rate brachytherapy

Auteur(s): Cui, Songye
Direction de recherche: Beaulieu, LucDesprés, Philippe
Résumé: L’objectif général de cette thèse est d’utiliser les connaissances en physique de la radiation, en programmation informatique et en équipement informatique à la haute pointe de la technologie pour améliorer les traitements du cancer. En particulier, l’élaboration d’un plan de traitement en radiothérapie peut être complexe et dépendant de l’utilisateur. Cette thèse a pour objectif de simplifier la planification de traitement actuelle en curiethérapie de la prostate à haut débit de dose (HDR). Ce projet a débuté à partir d’un algorithme de planification inverse largement utilisé, la planification de traitement inverse par recuit simulé (IPSA). Pour aboutir à un algorithme de planification inverse ultra-rapide et automatisé, trois algorithmes d’optimisation multicritères (MCO) ont été mis en oeuvre. Suite à la génération d’une banque de plans de traitement ayant divers compromis avec les algorithmes MCO, un plan de qualité a été automatiquement sélectionné. Dans la première étude, un algorithme MCO a été introduit pour explorer les frontières de Pareto en curiethérapie HDR. L’algorithme s’inspire de la fonctionnalité MCO intégrée au système Raystation (RaySearch Laboratories, Stockholm, Suède). Pour chaque cas, 300 plans de traitement ont été générés en série pour obtenir une approximation uniforme de la frontière de Pareto. Chaque plan optimal de Pareto a été calculé avec IPSA et chaque nouveau plan a été ajouté à la portion de la frontière de Pareto où la distance entre sa limite supérieure et sa limite inférieure était la plus grande. Dans une étude complémentaire, ou dans la seconde étude, un algorithme MCO basé sur la connaissance (kMCO) a été mis en oeuvre pour réduire le temps de calcul de l’algorithme MCO. Pour ce faire, deux stratégies ont été mises en oeuvre : une prédiction de l’espace des solutions cliniquement acceptables à partir de modèles de régression et d’un calcul parallèle des plans de traitement avec deux processeurs à six coeurs. En conséquence, une banque de plans de traitement de petite taille (14) a été générée et un plan a été sélectionné en tant que plan kMCO. L’efficacité de la planification et de la performance dosimétrique ont été comparées entre les plans approuvés par le médecin et les plans kMCO pour 236 cas. La troisième et dernière étude de cette thèse a été réalisée en coopération avec Cédric Bélanger. Un algorithme MCO (gMCO) basé sur l’utilisation d’un environnement de développement compatible avec les cartes graphiques a été mis en oeuvre pour accélérer davantage le calcul. De plus, un algorithme d’optimisation quasi-Newton a été implémenté pour remplacer le recuit simulé dans la première et la deuxième étude. De cette manière, un millier de plans de traitement avec divers compromis et équivalents à ceux générés par IPSA ont été calculés en parallèle. Parmi la banque de plans de traitement généré par l’agorithme gMCO, un plan a été sélectionné (plan gMCO). Le temps de planification et les résultats dosimétriques ont été comparés entre les plans approuvés par le médecin et les plans gMCO pour 457 cas. Une comparaison à grande échelle avec les plans approuvés par les radio-oncologues montre que notre dernier algorithme MCO (gMCO) peut améliorer l’efficacité de la planification du traitement (de quelques minutes à 9:4 s) ainsi que la qualité dosimétrique des plans de traitements (des plans passant de 92:6% à 99:8% selon les critères dosimétriques du groupe de traitement oncologique par radiation (RTOG)). Avec trois algorithmes MCO mis en oeuvre, cette thèse représente un effort soutenu pour développer un algorithme de planification inverse ultra-rapide, automatique et robuste en curiethérapie HDR.
Type de document: Thèse de doctorat
Date de publication: 2019
Date de la mise en libre accès: 8 novembre 2019
Lien permanent: http://hdl.handle.net/20.500.11794/37180
Université décernant le diplôme: Université Laval
Collection :Thèses et mémoires

Fichier(s) :
Description TailleFormat 
35615.pdf7.08 MBAdobe PDFMiniature
Télécharger
Tous les documents dans CorpusUL sont protégés par la Loi sur le droit d'auteur du Canada.