Bottom-up photochemical synthesis of structurally defined graphene nanoribbons and conjugated Polymers

Auteur(s): Miao, Dandan
Direction de recherche: Morin, Jean-François
Résumé: Le graphène peut être considéré comme l'un des matériaux les plus prometteurs pour les composants électroniques pratiques en raison de ses excellentes propriétés de transport de charge, de sa surface spécifique très élevée, de sa conductivité thermique excellente et de sa grande résistance mécanique. Cependant, ce graphène bidimensionnel est un semiconducteur à bande interdite nulle, ce qui limite son application pratique dans les dispositifs électroniques. L'une des méthodes les plus prometteuses pour ouvrir une bande interdite est le confinement structurel du graphène en bandes étroites, définies comme des nanorubans de graphène (GNR). La bande interdite des GNR peut être contrôlée avec précision par la largeur et la configuration des bords, ce qui donne aux GNR des propriétés optiques et électroniques réglables. La synthèse ascendante en solution est l’une des stratégies les plus prometteuses pour préparer des GNR structurellement bien définis avec des propriétés optiques et électroniques ajustables. Contrairement aux méthodes descendantes, la stratégie ascendante permet un contrôle précis de la largeur et de la configuration des bords des GNR. Une stratégie couramment utilisée, la réaction de cyclodéshydrogénation catalysée par l'acide de Lewis, appelée réaction de Scholl, a été largement utilisée pour synthétiser une grande variété de GNR bien définis sur des précurseurs de polyphénylène. Cependant, la réaction de Scholl présente de sérieux inconvénients qui limitent la portée et la polyvalence de cette réaction. Le premier est sa faible régiosélectivité qui entraîne des défauts de structure et affecte les propriétés des GNR. Ensuite, les réarrangements indésirables et l'utilisation d'un catalyseur métallique peuvent conduire à la formation de sous-produits. De plus, l'introduction de groupes fonctionnels sensibles aux oxydants et d'hétérocycles riches en électrons est difficile à réaliser en raison des conditions de réaction difficiles, qui limitent la diversité des propriétés structurelles et électroniques des GNR. Notre groupe a récemment développé une synthèse de nanographènes et de GNR à l'aide de la réaction de cyclodéhydrochloration photochimique (CDHC) sur des précurseurs de polyphénylène polychlorés. La réaction CDHC possède une haute régiosélectivité et se déroule sans réarrangement ni formation de sous-produits. De plus, la réaction CDHC est conduite sans catalyseur métallique ni oxydant dans des conditions très douces, permettant ainsi l’introduction de différents groupes fonctionnels et hétérocycles sur le GNR afin de moduler leurs propriétés optoélectroniques. En comparant avec la réaction de Scholl, la réaction CDHC permet de mieux contrôler les configuration de bord des GNR. Cette thèse présente en détail l'utilisation de la réaction CDHC pour la préparation de GNR et étudie avec soin les propriétés structurelles et optoélectroniques des GNR produits. Tout d'abord, les GNR asymétriques et latéralement symétriques ont été préparés pour démontrer la régiosélectivité, le contrôle des configuration de bord et l'efficacité de la réaction photochimique CDHC. Ensuite, les GNR à bord thiophène ont été synthétisés pour montrer la polyvalence de la réaction CDHC et étudier l'influence de l'introduction de groupes fonctionnels riches en électrons sur les structures et les propriétés optoélectroniques des GNR. Ensuite, les polymères échelle conjugués (CLP) contenant des unités pyrrole riches en électrons ont été synthétisés pour montrer la compatibilité de la réaction du CDHC avec des groupes fonctionnels très riches en électrons et le rendement élevé de la réaction du CDHC. Enfin, divers dérivés d'ullazine fusionnés avec des hétérocycles riches en électrons ou pauvres en électrons ont été préparés et une série de polymères donneurs-accepteurs conjugués (D-A CP) ont été synthétisés et ces polymères ont été utilisés avec succès dans les cellules solaires à polymères et ont présenté des performances très prometteuse, indiquant l’efficacité, la polyvalence et le caractère pratique de la réaction photochimique CDHC
Type de document: Thèse de doctorat
Date de publication: 2019
Date de la mise en libre accès: 30 octobre 2019
Lien permanent: http://hdl.handle.net/20.500.11794/37138
Université décernant le diplôme: Université Laval
Collection :Thèses et mémoires

Fichier(s) :
Description TailleFormat 
35690.pdf21.54 MBAdobe PDFMiniature
Télécharger
Tous les documents dans CorpusUL sont protégés par la Loi sur le droit d'auteur du Canada.