Bottom-up photochemical synthesis of structurally defined graphene nanoribbons and conjugated Polymers

Authors: Miao, Dandan
Advisor: Morin, Jean-François
Abstract: Graphene is considered as one of the most promising materials for practical electronic components because of its outstanding charge transport properties, very high specific surface area, excellent thermal conductivity, and high mechanical strength. However, this two dimensional graphene is a zero band gap semiconductor, which limits its practical application in electronic devices. One of the most promising methods to open a band gap is the structural confinement of graphene into narrow strips, which is defined as graphene nanoribbons (GNRs). The band gap of GNRs can be precisely controlled by the width and edge configuration, providing GNRs with tunable optical and electronic properties. Bottom-up, solution-phase synthesis is one of the most promising strategies to prepare structurally well-defined GNRs with tunable optical and electronic properties. Unlike the top-down methods, the bottom-up strategy allows a precise control over the width and edge configuration of GNRs. One of the most commonly used strategy, the Lewis acid catalyzed cyclodehydrogenation reaction, known as the Scholl reaction, has been widely used to synthesize a large variety of well-defined GNRs on polyphenylene precursors. However, the Scholl reaction possesses some serious drawbacks that limit the scope and versatility of this reaction. First is its poor regioselectivity that results in structural defects to affect the properties of GNRs. Then the undesired rearrangements and the use of a metal catalyst can lead to the formation of by-products. Moreover, the introduction of oxidant-sensitive functional groups and electron-rich heterocycles is difficult to achieve due to the harsh reaction conditions, which limits the diversity of structural and electronic properties of GNRs. Recently, our group reported the synthesis of nanographenes and GNRs using the photochemical cyclodehydrochlorination (CDHC) reaction on polychlorinated polyphenylene precursors. The CDHC reaction possesses high regioselectivity and it proceeds without rearrangements or the formation of side-products. Furthermore, the CDHC reaction is conducted without metal catalyst and oxidant under very mild conditions, thus enabling the introduction of different functional groups and heterocycles onto the GNRS to modulate their optoelectronic properties. And comparing with the Scholl reaction, the CDHC reaction provides better cont rol over the edge configuration of the GNRs. This paper investigates in detail the usefulness of the CDHC reaction for the preparation of GNRs and carefully studies the structur al and optoelectronic properties of the GNRs produced. First the laterally symmetrical and unsymmetrical GNRs were prepared to demonstrate the regioselectivity edge configuration control, and efficiency of the photochemical CDHC reaction. Then the thiophene edged GNRs were synthesized to show the versatility of the CDHC reaction and study the i nfluence of the introduction of electron rich functional groups on the structures and optoelectronic properties of GNRs. Then, the conjugated ladder polymers (CLPs) containing electron rich pyrrole units were synthesized to show the compatibility of the CDHC reaction with very electron rich functional groups and the high efficiency of the CDHC reaction. Finally various  extended ullazine derivatives fused with electron rich or electron poor heterocycles were prepared and a series of conjugated donor acceptor polymers (D A CPs) were synthesized and these polymers were successfully employed in the polymer solar cells and exhibited very promising performances, indicating the efficiency, versatility and practicality of the photochemical CDHC reactio n
Document Type: Thèse de doctorat
Issue Date: 2019
Open Access Date: 30 October 2019
Permalink: http://hdl.handle.net/20.500.11794/37138
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
Description SizeFormat 
35690.pdf21.54 MBAdobe PDFThumbnail
View/Open
All documents in CorpusUL are protected by Copyright Act of Canada.