Ca²+ mechanisms of synaptic integration and plasticity in inhibitory interneurons

Authors: Camiré, Olivier
Advisor: Topolnik, Lisa
Abstract: Dendritic Ca2+ signaling plays an important role in the regulation of neuronal processes, such as synaptic plasticity and input integration. Well-studied in principal neurons, this form of regulation is not well understood in the various types of GABAergic interneurons that modulate activity in neuronal networks. In fastspiking (FS) interneurons, a common interneuron type in cortical circuits, it has been shown that there is a lack of action potential (AP) backpropagation in distal dendrites (Hu et al., 2010). This discovery has functional implications, AP backpropagation is an important signal for the induction of Hebbian forms of synaptic plasticity. However, it has been suggested that local dendritic activity could compensate for the absence of AP backpropagation. Consequently, this work focuses on the study of Ca2+ transients in distal dendrites of FS interneurons. We sought to determine whether it is possible to generate supralinear Ca2+ transients through local dendritic stimulation, to study the mechanisms responsible for those transients and to determine whether those signals play a role in the regulation of synaptic plasticity at those synapses. To reach those objectives, we used a combination of electrophysiological methods (whole-cell patch-clamp recordings), two-photon Ca2+ imaging and of computational modeling. We were able to establish that supralinear postsynaptic Ca2+ transients can be generated through local electrical stimulation of excitatory synapses in distal dendrites. These Ca2+ transients were mediated by Ca2+ influx from the activation of Ca2+-permeable AMPA receptors, which triggers Ca2+ release through ryanodine receptors present on intracellular Ca2+ stores (Ca2+-induced Ca2+ release). These Ca2+ signals also contain a minor contribution from NMDA receptors, and stay localized (no significant propagation in the dendritic arbor). In addition, we determined that these supralinear Ca2+ signals constitute a switch in the expression of synaptic plasticity, as they induce long-term depression in local synapses, while low-amplitude Ca2+ signals induced synaptic long-term potentiation. We also examined whether these supralinear Ca2+ transients were generated in both apical and basal dendrites, which receive synaptic contacts from different sources (Schaffer collaterals vs local collaterals). We observed that Ca2+ transients in apical dendrites had a higher amplitude and were associated with a higher level of somatic depolarization. We were also able to predict, through computational modeling, the number of synapses necessary to the generation of those signals and the potential contribution of Ca2+ extrusion mechanisms. Finally, we studied the cell-specificity of dendritic integration mechanisms by combining Ca2+ imaging and modeling in a different interneuron type, interneuron-specific interneurons type III. In conclusion, we were able to prove that certain interneurons possess alternative mechanisms, mediated through local Ca2+ transients, that allow for the regulation of plasticity at excitatory synapses.
Document Type: Thèse de doctorat
Issue Date: 2019
Open Access Date: 22 October 2019
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
Description SizeFormat 
34988.pdf7.7 MBAdobe PDFThumbnail
All documents in CorpusUL are protected by Copyright Act of Canada.