Modulation de la protéine de polarité épithéliale Yurt par phosphorylation et oligomérisation

Authors: Gamblin, Clémence
Advisor: Laprise, Patrick
Abstract: The polarized architecture of epithelial cells along the apical-basal axis is crucial for epithelial tissue morphogenesis, physiology and homeostasis. Over 80% of cancers are of epithelial origin, and the alteration of cell polarity contributes to cancer progression. Elucidating the molecular mechanisms controlling epithelial polarity is therefore essential. The protein Yurt stabilizes the lateral membrane and limits apical membrane growth in polarized epithelia. The human Yurt orthologs EHM2 and EPB41L5 are overexpressed in many cancers. This correlates with poor outcome for patients. EPB41L5 also supports epithelial-mesenchymal transition and metastasis. Elaborating strategies limiting EHM2 and EPB41L5 activity is of special interest in oncology. The general objective of my PhD was to decipher the regulation of these proteins to pave the way for new therapeutic strategies for the treatment of cancer. During organogenesis, Yurt is confined to the lateral membrane and supports the stability of this membrane domain by repressing the apical machinery. At later stages of embryogenesis, the apical recruitment of Yurt establishes a local negative regulatory feedback loop that restricts the size of the apical membrane. However, the molecular basis sustaining the spatiotemporal dynamics of Yurt, and the precise mechanisms by which Yurt inhibits apical promoting factors were undefined. During the first part of my Ph.D., we demonstrated that aPKC phosphorylates Yurt to prevent its premature apical localization. A non-phosphorylatable version of Yurt dominantly dismantles the apical domain, showing that its aPKC-mediated exclusion is crucial for epithelial cell polarity. In return, Yurt counteracts aPKC functions to prevent apicalization of the plasma membrane. The ability of Yurt to bind and restrain aPKC signaling is central for its role in polarity, as removal of the aPKC binding site neutralizes Yurt activity. Thus, Yurt and aPKC are involved in a reciprocal antagonistic regulatory loop that contributes to the segregation of discrete and mutually exclusive membrane domains, thereby sustaining the functional architecture of epithelial tissues. To further define how Yurt activity is modulated, we investigated the biochemical properties of Yurt and its orthologs. Yurt and EPB41L5 belong to the Four-point-one, Ezrin, Radixin, Moesin (FERM) domain protein family. These proteins also contain a FERM-adjacent (FA) domain which defines a subfamily of FERM proteins. Some proteins of this superfamily have the ability to multimerize. Our results indicate that both Yurt and EPB41L5 oligomerize. Our data also establish that the FERM-FA unit forms an oligomeric interface, and that multimerization of Yurt is crucial for its function in epithelial cell polarity regulation. Finally, we demonstrated that aPKC destabilizes the Yurt oligomer to repress its functions, thereby revealing a mechanism through which this kinase supports apical domain formation. In summary, my Ph.D. work has deciphered the mechanism sustaining the apical exclusion of Yurt by aPKC in immature epithelial cells. We have also demonstrated a reciprocal antagonistic regulatory loop between Yurt and aPKC. This contributes to maintaining the proper segregation of membrane domains, and thus supporting the functional architecture of epithelial tissues. In addition, we have demonstrated that Yurt oligomerization is crucial for its in vivo functions. This biochemical property is conserved in its human ortholog EPB41L5. This offers a unique opportunity in the fight against cancer. Indeed, compounds interfering with this oligomerization could limit the activity of EPB41L5, and thus counteract tumor progression.
Document Type: Thèse de doctorat
Issue Date: 2018
Open Access Date: 24 September 2019
Permalink: http://hdl.handle.net/20.500.11794/36616
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
Description SizeFormat 
34622.pdf6.12 MBAdobe PDFThumbnail
View/Open
All documents in CorpusUL are protected by Copyright Act of Canada.