Comparative study of infrared thermography, ultrasonic C-scan, X-ray computed tomography and terahertz imaging on composite materials

Authors: Zhang, Hai
Advisor: Maldague, Xavier
Abstract: Non-destructive testing (NDT) of composite materials is complicated due to the wide range off laws encountered (including delamination, micro-cracking, fiber fracture, fiber pullout, matrix cracking, inclusions, voids, and impact damage). The ability to quantitatively characterize the type, geometry, and orientation of flaws is essential. Infrared thermography (IRT), as an image diagnostic technique, can satisfy the increasing industrial need for NDT&E. In the thesis, optical and mechanical excitation thermography were used to investigate different composite materials, including 1) carbon fiber dry preforms, 2) natural fiber composites, 3) basalt-carbon fiber hybrid composites subjected to impact loading (sandwich-like and intercalated stacking sequence), 4) micro-sized flaws in a stitched T-joint 3D carbon fiber reinforced polymer composite (CFRP), and 5) paintings on canvas which can be considered as composite materials. Of particular interest, a new IRT technique micro-laser line thermography (micro-LLT) was proposed for the evaluation of submillimeter porosities in CFRP. Micro-laser spot thermography (micro-LST) and micro-vibrothermography (micro-VT) were also presented with the usage of a micro-lens. Pulsed thermography (PT) and lock-in thermography (LT) were compared with x-ray computed tomography (CT) for validation. Ultrasonic C-scan (UT) and continuous wave terahertz imaging (CW THz) were also conducted for the comparative purpose. The inspection by thermographic techniques is an open matter to be discussed for the scientific audience. In fact, pulse phase thermography (PPT) based on phase transform was used to estimate the damage depth. Basic thermographic signal reconstruction (B-TSR), principal component thermography (PCT) and partial least squares thermography (PLST) (another more recent advanced image processing technique) were also used to pro-cess the thermographic data. Finally, a comprehensive and comparative analysis based on thermographic image diagnostics was conducted in view of potential industrial applications.
Document Type: Thèse de doctorat
Issue Date: 2017
Open Access Date: 20 September 2019
Permalink: http://hdl.handle.net/20.500.11794/36573
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
Description SizeFormat 
33596.pdf25.7 MBAdobe PDFThumbnail
View/Open
All documents in CorpusUL are protected by Copyright Act of Canada.