Improvement of cutting tool life for the primary transformation of wood

Authors: Heidari, Majid
Advisor: Blais, CarlHernández, Roger
Abstract: Controlling cutting knife wear is a big challenge in industry of primary transformation of wood. By controlling the knife wear, maintenance cost will be reduced and higher quality of products will be achieved. Wear conditions in the wood transformation industry is very intricate. In this project, wear study was performed in order to understand the work condition in primary transformation of wood. Microscopic analysis was conducted to investigate wear mechanisms on the edge of knives. Wear properties on both rake face and clearance face were studied. Material selection and heat treatment practices were done in the second part of the project in order to optimize the tool life. Three steels from different tool steel categories were selected. Heat treatment tests were carried in nine different conditions per steel. Hardness, impact and dry-sand-rubber-abrasion-wear according to ASTM G65 standard (DSRW) tests were applied for evaluating the samples. Last part of this project was about evaluating of industrial coatings by physical vapour deposition (PVD) method for the working condition in primary transformation of wood. Tests were done on optimized samples from heat treatment study. Six different coatings were selected in order to perform high resistance to conditions where both abrasion and periodic impact are present. Impact Fatigue test machine was fabricated in order to evaluate the resistance of coatings to working conditions of periodic shock on the surface. Micro-hardness and DSRW test were done as well. In order to evaluate the surface change after each experiment, SEM imaging was done. The two dominant mechanisms that were observed are micro abrasion and edge chipping. The micro-abrasion patterns found on rake and clearance surfaces were dissimilar and there was a significant difference in size and shape of abrasion marks. The optimum resistance to abrasion wear and impact was achieved for AISI H13 tool steel quenched from 1040°C followed by double-tempering at 580°C. AlCrTiN coating was the best coating to improve the resistance of AISI A8 tool steel to both abrasive and impact fatigue wear. For both AISI S1 and AISI H13 steel, TiAlCrN coating has performed optimum resistance to abrasive working condition which is major cause of tool wear in chipper-cantering.
Document Type: Thèse de doctorat
Issue Date: 2019
Open Access Date: 1 August 2019
Permalink: http://hdl.handle.net/20.500.11794/35717
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
Description SizeFormat 
35057.pdf85.44 MBAdobe PDFThumbnail
View/Open
All documents in CorpusUL are protected by Copyright Act of Canada.