Utilisation des technologies CRISPR/Cas9 pour le développement d'approches thérapeutiques pour le traitement de la dystrophie musculaire de Duchenne

Authors: Duchêne, Benjamin
Advisor: Tremblay, Jacques-P.
Abstract: Duchenne Muscular Dystrophy is one of the most severe genetic disease. It is caused by a mutation in the dystrophin gene. Such mutation is responsible for the absence of the dystrophin protein in the muscles thus leading to muscle wasting and to a premature death following cardiorespiratory failure. The discovery of the CRISPR/Cas9 systems opened the path for the establishment of curative treatments for genetic diseases, such as DMD. A Cas9 endonuclease can generate a double strand break in the DNA at a targeted locus through a guide RNA that specifically recognize a DNA protospacer sequence located closed to a protospacer adjacent motif (PAM). Recent work published by others demonstrated that the use of a pair of sgRNAs targeting introns permitted to create a genomic deletion that restores the DMD gene reading frame thus leading to de novosyn thesis of a truncated dystrophin protein. However, such deletion does not consider the resulting structure of the central part of the dystrophin. In Becker muscular dystrophic patients, a truncated dystrophin protein is synthesized but the severity of the disease could be related to the structure of this protein. Consequently, it seems relevant to develop a therapeutic approach that considers the structure of the spectrin-like repeat that forms the central rod-domain of the dystrophin protein. Further more, while CRISPR/Cas9 is on the rise it also raises safety issues for patients. Indeed, off-target mutations and immune response directed against such endonuclease can occur thus preventing the possibility of starting clinical trials. Consequently, there is an increasing need to develop safer approaches that may counter such undesirable effects. Our results demonstrated the feasibility of inducing a large genomic deletion with the Cas9 from S. aureus with a pair of sgRNAs targeting exons. Such deletion allows the formation of a hybrid exon that could, in addition to restoring the expression of the dystrophin protein, restore the correct structure of the spectrin-like repeat in its central rod-domain. We have been able to demonstrate such dystrophin expression in vitroand in vivoin four different DMD patient cell lines and in a dystrophic mouse model, respectively. Next, we envisioned the delivery of Cas9/sgRNA ribonucleoprotein complexes using the Feldan Shuttle technology. We provided proof-of-principle that such delivery permits the editing of the dystrophin gene in the TA of mouse models. Following the editing, dystrophin protein expression was restored in the treated muscles of a dystrophic mouse model. Since this approach remains restricted to in situ treatments, further development should be addressed to allow systemic delivery of Cas9/sgRNA. Finally, we provided evidence that the self-catalytic activity of the ribozyme N79 can be controlled using toyocamycin. Even if it only demonstrated its efficacy in vitro, this system opens the path to the development of a different tool for the pharmacological induction of endonuclease protein expression. Finally, this work contributes to the improvement of our understanding for the establishment of a potent and safe therapy to find a cure for DMD.
Document Type: Thèse de doctorat
Issue Date: 2019
Open Access Date: 11 July 2019
Permalink: http://hdl.handle.net/20.500.11794/35436
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
Description SizeFormat 
35136.pdf5.11 MBAdobe PDFThumbnail
View/Open
All documents in CorpusUL are protected by Copyright Act of Canada.