Développement d'une thérapie génique pour l'Ataxie de Friedreich en induisant l'expression du gène de la frataxine avec les TALEs-FT

Authors: Cherif, Khadija
Advisor: Tremblay, Jacques-P.
Abstract: Friedreich's ataxia (FRDA) is the most frequent autosomal recessive hereditary ataxia. FRDA is due to a mutation of the frataxin gene (FXN) located on chromosome 9, q13. This mutation is an increase in the number of repetitions of the trinucleotide GAA in the 1st intron of the frataxine gene (FXN). The number of trinucleotides increases from less than 30 in normal subjects up to 1300 in patients. This decreases the expression of the protein frataxin, a protein which plays an important role in the metabolism of iron in the mitochondria. My project deals with the use of TALE-platinum (plTALE) proteins fused with transcription-enhancing systems (FT), such as VP64 or P300. These plTALEs specifically target the regulatory region of the FXN gene to increase its transcription and thusinduce an increase in the expression of the frataxin protein.The plTALEs contain variations in amino acids 4 and 30 for each Repeat Variable Diresidues in addition to the variations of amino acids 12 and 13. These variations make it possible to increase the specificity of the plTALEs for the targeted nucleotide sequences. The assembly of the RVDs of plTALEs was done using modules containing 4 RVDs, which makes it possible to obtain anassembly efficiency of 100%. We produced 34 plTALE-FT effectors that target 14 sequences of the FXN gene to select 3 plTALE-VP64 and 2 plTALE-SunTag10X, which increased FXN gene transcription and expression by up to 19-folds in different FRDA model cells. We quantified the synthesis of mRNAs and of FXN protein after in vitro treatment with these plTALEs-FT by qRT-PCR and westerns. The results show that these selected PlTAL-FT induced the transcription of the endogenous FXN gene as well as the expression of the frataxin protein in vitro. The increase in frataxin increased the aconitase activity, which is modulated reversibly by the level of frataxin in the mitochondria. We used an AAV9 virus to deliver plTALE-FT in FRDA model mice to validate the efficacy of these effectors in vivobefore proceeding to preclinical testing. The results of these in vivotreatments are not yet available.
Document Type: Mémoire de maîtrise
Issue Date: 2017
Open Access Date: 17 April 2019
Permalink: http://hdl.handle.net/20.500.11794/34474
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
Description SizeFormat 
33426.pdf6.14 MBAdobe PDFThumbnail
View/Open
All documents in CorpusUL are protected by Copyright Act of Canada.