The effects of polyphenol-rich extracts on obesity-linked metabolic diseases

Authors: Anhê, Fernando Forato
Advisor: Marette, André
Abstract: Obesity and its wide spectrum of associated diseases have reached worrisome pandemic proportions, underscoring the need for alternative strategies to fight this problem. Plant-rich diets are well-established determinants of a lower incidence of obesity-related diseases, and fruits are important components of these diets. Supported by strong epidemiological evidence linking polyphenol-rich diets and better health status, research has been focused on the potential health effects of these plant secondary metabolites, albeit the mechanisms by which these poorly bioavailable phytonutrients improve metabolic health remains are not yet fully understood. Since there is compelling evidence for a relationship between host metabolic control and the gut microbiota, the work presented in this thesis aimed to investigate the impact of polyphenol-rich berry extracts on features of the metabolic syndrome in diet-induced obese mice. The work presented in this thesis also focuses on the relationship between putative gut microbial alterations driven by dietary polyphenols and its relevance to host metabolism. By daily treating dietinduced obese mice with polyphenol-rich extracts of a wide range of berries (with varied polyphenolic concentration and composition) we demonstrated that the most bioactive extracts (i.e., cranberry, cloudberry, alpine bearberry, lingonberry and camu camu) shared in common the ability to dampen intestinal inflammation and bacterial lipopolysaccharide leakage to systemic circulation, findings associated with reduced hepatic steatosis and improved insulin resistance. 16S rRNA genebased analysis of fecal DNA revealed that the improved metabolic status linked to the administration of these polyphenolic extracts was associated with a drastic gut microbial remodeling, marked by a consistent bloom of Akkermansia muciniphila. This gut bacterium is strongly associated with leanness in humans and its administration to obese mice reversed features of the metabolic syndrome. The findings presented in this thesis suggest that polymers of polyphenols, namely proanthocyanidins and ellagitannins, may have a superior impact on the gut-liver homeostasis, supporting further research on these particular classes of phenolic phytonutrients. While bringing evidence that substantiate the regular consumption of sources of proanthocyanidins and ellagitannins as a strategy to prevent prevalent chronic diseases associated with obesity, this work provides novel mechanistic insights pointing to the gut-liver axis and the gut microbiota as primary targets of dietary polyphenols in order to improve metabolic health.
Document Type: Thèse de doctorat
Issue Date: 2017
Open Access Date: 21 November 2018
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
Description SizeFormat 
33882.pdf9.6 MBAdobe PDFThumbnail
All documents in CorpusUL are protected by Copyright Act of Canada.