Transfer learning for sEMG hand gesture recognition using convolutional neural networks

Authors: Côté Allard, UlysseFall, Cheikh LatyrCampeau-Lecours, AlexandreGosselin, ClémentLaviolette, FrançoisGosselin, Benoit
Abstract: In the realm of surface electromyography (sEMG) gesture recognition, deep learning algorithms are seldom employed. This is due in part to the large quantity of data required for them to train on. Consequently, it would be prohibitively time consuming for a single user to generate a sufficient amount of data for training such algorithms. In this paper, two datasets of 18 and 17 able-bodied participants respectively are recorded using a low-cost, low-sampling rate (200Hz), 8-channel, consumer-grade, dry electrode sEMG device named Myo armband (Thalmic Labs). A convolutional neural network (CNN) is augmented using transfer learning techniques to leverage inter-user data from the first dataset and alleviate the data generation burden imposed on a single individual. The results show that the proposed classifier is robust and precise enough to guide a 6DoF robotic arm (in conjunction with orientation data) with the same speed and precision as with a joystick. Furthermore, the proposed CNN achieves an average accuracy of 97.81% on seven hand/wrist gestures on the 17 participants of the second dataset.
Document Type: Article dans une conférence
Issue Date: 1 December 2017
Open Access Date: 16 November 2018
Document version: AM
This document was published in: IEEE International Conference On Systems, Man and Cybernetics
Alternative version: 10.1109/SMC.2017.8122854
Collection:Autres articles publiés

Files in this item:
Description SizeFormat 
SMC17_FINAL (1).pdf2.03 MBAdobe PDFThumbnail
All documents in CorpusUL are protected by Copyright Act of Canada.