Design, development and validation of iron-based composites for biodegradable implant applications

Authors: Sikora-Jasinska, Malgorzata
Advisor: Mantovani, D.Vedani, Maurizio
Abstract: Fe-based alloys have shown a potential as a degradable material for biomedical applications. Nevertheless, the slow corrosion rate limits their performance as a biodegradable implant. One approach to control and modify their corrosion properties is the reinforcement addition, to create metal matrix composites in which the second phase is aimed at tuning not only the mechanical properties but also the corrosion mode and rate in a physiological environment. This thesis presents an original and thorough contribution on a very pertinent topic, the design, development, and validation of a new Fe/Mg2Si composites prepared powder metallurgy. The initial powders were prepared by different combinations of mixing and high energy ball milling processes and finally consolidated by hot rolling. Mechanical properties, microstructural features, as well as the corrosion performance, were extensively investigated in relation to the reinforcement size and distribution. The composites made of small size reinforcement particles showed a general increase in tensile strength. For instance, high energy ball milled samples exhibited better tensile performances (YS = 523 MPa, UTS = 630 MPa) while having the lower ductility (around 4%). A fundamental understanding of corrosion initiation, protective film formation, and growth on Fe-based materials and leads to a design of smarter and surface responsive biomaterials with modulable degradation rates, at distinct stages of the corrosion process. Here, the corrosion performance of Fe/Mg2Si composites varied with the reinforcement size and distribution. The predominant localized pitting corrosion in Fe/Mg2Si prepared by mixing was replaced by a more uniform pattern found in samples produced by mechanical milling. Further, it was found that Mg2Si plays a significant role in the composition and stability of the protective films formed during the static corrosion experiments. Fe/Mg2Si showed a higher corrosion rate compared to that of pure Fe at all stages of the corrosion experiment (1, 10, 20, 50 and 100 days). Moreover, the final degradation products varied with the substrate chemical composition and microstructure. In case of pure Fe, low solubility (Fe3(PO4)2) covered the entire surface, while Fe/Mg2Si exhibited the presence of carbonates at the latest stages of the test. The details about the degradation behaviour during long-term exposure times to the physiological environment highlighted in this work add a new knowledge on corrosion mechanism of degradable implant materials. In particular, the ability to tune mechanical and corrosion behavior of the composites as a function of reinforcement properties and manufacturing method was experimentally verified, highlighting the microstructure-corrosion property relationship.
Document Type: Thèse de doctorat
Issue Date: 2018
Open Access Date: 26 September 2018
Permalink: http://hdl.handle.net/20.500.11794/31427
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
SizeFormat 
34379.pdf8.91 MBAdobe PDFView/Open
All documents in CorpusUL are protected by Copyright Act of Canada.