Contrôle de l'interaction polymère/particules dans les membranes à matrice mixte

Authors: Nguyen, Tien Binh
Advisor: Kaliaguine, S.Rodrigue, Denis
Abstract: In recent decades, membrane technology has shown its great performance in liquid phase separations such as production of drinking water from seawater. It has now attracted much scientific attention to expand its application to gas separations. Separation of air components, H2 from refinery industrial gases, separation and recovery of CO2 from biogas and natural gas are some examples in which the membrane technology is potentially applied at industrial level. The membrane based separation was either partially substituted or integrated with conventional methods like cryogenic distillation to product oxygen-enriched air (mole fraction 30% ) that is injected into industrial burners to obtain higher temperature with less gas consumption. It is also possible to use membrane technology to capture and recycle CO2 emitted from flue gas streams of power plants and steel mills in solving the greenhouse effect. The membranes for gas separation can be classified in two main categories, based on material, polymeric and inorganic, in which polymeric membranes are more popular. Compared to the inorganic, the polymer membranes show better processability, mechanical strength and higher packing density, hence, being suitable for large-scale applications. They cannot, however, withstand high temperatures or aggressive chemical agents. Their separation properties (permeability and selectivity) may be severely affected by condensable hydrocarbons (C2+) when they are applied in petrochemical plants, refineries and natural gas treatment. To enhance the performance of polymer membranes, a new concept, mixed matrix membrane (MMM), has been proposed by dispersing nano- or micro-sized particles of inorganic materials into a polymer matrix. In this work, we have prepared novel MMMs using polymers and metal organic framework (MOF) as the continuous and dispersed phases, respectively. We have developed several techniques to overcome the weak interfacial adhesion between the two phases that typically decreases the separation efficiency of MMMs. To do so, in the first part of this thesis (Chapter 3), we have synthesized a -NH2 included MOF particle and a series of -OH decorated polymers for MMM preparation. The physical bonding between the two functional groups was found to clearly improve the polymer/filler adhesion of the obtained MMMs as well as their gas separation performance. Then, in the following part (Chapter 4), we have introduced a post-synthetic modification to form chemical bonding between the polymer and filler within MMMs. Under optimized conditions, a functionalized MOF bearing crosslinkable groups was reacted with an as-synthesized polymer containing reactive chain-ends to produce, for the first time, crosslinked MMMs. In the final part (Chapter 5), we have described a novel technique to obtain in-situ the polymer-filler chemical bonding during the polymer synthesis. In this technique, the MOF particles were directly introduced into the polymerization medium. The extent of the polymer-filler link was studied as a function of polymerization time. This study has shown a strong relationship between the quality of polymer-filler interaction and the gas separation properties of the MMMs.
Document Type: Thèse de doctorat
Issue Date: 2018
Open Access Date: 19 September 2018
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
34437.pdf23.56 MBAdobe PDFView/Open
All documents in CorpusUL are protected by Copyright Act of Canada.