Développement d'un traitement pour l'épidermolyse bulleuse dystrophique récessive combinant la thérapie génique et le génie tissulaire

Authors: Dakiw Piaceski, Angela
Advisor: Germain, LucieCaruso, Manuel
Abstract: Recessive dystrophic epidermolysis bullosa (RDEB) is a rare genetic disease caused by mutations in the COL7A1 gene, which encodes type VII collagen. Secreted by keratinocytes and fibroblasts, the type VII collagen forms the anchoring fibrils that ensure dermal-epidermal junction cohesion in the skin. Its absence leads to epidermal detachment. There is no cure for RDEB. The objective of this project is to develop a treatment for RDEB, integrating gene therapy and tissue-engineered skin substitutes produced with human fibroblasts and keratinocytes genetically modified to express the COL7A1 gene. A method to transduce fibroblasts and keratinocytes was optimized. The efficacy of the enhancers EF-C and polybrene to increase the transduction efficiency of pseudotyped retroviral vectors with the Ampho, Baev, Galv or RD114 envelopes was compared. The optimized conditions were used to deliver the COL7A1 gene tagged with hemagglutinin (HA) in the cells used to reconstruct in vitro tissue-engineered skin substitute by the self-assembly method. Results showed that the EF-C-peptide increased transduction of fibroblasts and keratinocytes in comparison to polybrene. In addition, the colony forming efficiency assay indicated that optimized conditions of transduction allowed to preserve keratinocyte clones typically formed by stem cells. When transduced cells were used to produce tissue-engineered skin substitute, type VII collagen synthesized from the newly inserted COL7A1 tagged HA gene was located at the dermal-epidermal junction like in native skin. These results indicate that the combination of gene therapy and tissue engineering is a promising technology for the treatment of RDEB. The transplantation of autologous tissue-engineered skin substitutes genetically corrected with normal COL7A1 gene in RDEB patients could offer a safe and effective method to treat this disease.
Document Type: Mémoire de maîtrise
Issue Date: 2016
Open Access Date: 31 August 2018
Permalink: http://hdl.handle.net/20.500.11794/30950
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
Description SizeFormat 
33107.pdf7.78 MBAdobe PDFThumbnail
View/Open
All documents in CorpusUL are protected by Copyright Act of Canada.