Implication de PIM1 dans la réparation de l'ADN par la jonction d'extrémités non-homologues en hypertension artérielle pulmonaire

Authors: Lampron, Marie-Claude
Advisor: Paulin, Roxane
Abstract: RATIONALE: Pulmonary Arterial Hypertension (PAH) is a fatal disease characterized by the narrowing of pulmonary arteries (PA) due to vascular remodeling. It is now established that this phenotype is associated with enhanced pulmonary artery smooth muscle cells (PASMC) proliferation and suppressed apoptosis. This phenotype is sustained in part by the activation of several DNA repair pathways allowing PASMC to survive despite the environmental stresses seen in PAH. PIM1 is an oncoprotein upregulated in PAH and that has been implicated in many pro-survival pathways in cancer, including DNA repair. PIM1 inhibitors, like SGI-1776, are already in clinical trials in cancer and could thus be beneficial to PAH patients. OBJECTIVES: The aim of this study is to demonstrate the implication of PIM1 in the DNA damage response and the beneficial effect of its inhibition by SGI-1776 in human PAH-PASMC and in rat preclinical model of PAH. METHODS/RESULTS: Using western blot we showed in both human PAH lungs (n=10) and PAH-PASMC (n=5) a significant upregulation of PIM1 compared to control donor (n=5). PIM1 upregulation in PAH was associated with a significant activation of DNA damage sensor (γH2AX), which is critical for DNA repair initiation. We showed that PIM1 inhibition using SGI-1776 (1,3, and 5μM) significantly impaired DNA repair capacity in PASMC (n=4) with a significant repression of Ku70, DNA-PKcs, and γH2AX and decreased ATM expression. We showed no diminution of DNA damage with SGI-1776 treatment (Comet Assay, n=3). As expected, the lack of DNA repair in SGI-1776 treated PAH-PASMC lead to a significant reduction in proliferation (Ki67 n=3; p<0.05) and resistance to apoptosis (AnnexinV assay n=3; p<0.05). In vivo, SGI-1776 10mg*kg-1 given 3 times a week, improves significantly (n=30; p<0.05) monocrotaline-induced PH (decreased RVSP, mean PA pressures and vascular remodeling). CONCLUSION: We demonstrated for the first time that PIM1 is implicated in DNA repair signaling in PAH-PASMC and that repressing its activity everses PAH both in vitro and in vivo.
Document Type: Mémoire de maîtrise
Issue Date: 2018
Open Access Date: 6 June 2018
Permalink: http://hdl.handle.net/20.500.11794/29957
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
SizeFormat 
34381.pdf3.93 MBAdobe PDFView/Open
All documents in CorpusUL are protected by Copyright Act of Canada.