Rôle de la poly(ADP-ribose) polymérase 1 dans la reconnaissance et la réparation des dommages directs induits à l'ADN par les radiations ultraviolettes

Authors: Robu, Mihaela
Advisor: Shah, Girish M.
Abstract: Poly(ADP-ribose) polymerase 1 (PARP1) is a highly abundant nuclear enzyme which is present in higher eukaryotes but absent in bacteria and yeasts. In response to DNA damage, it uses the nicotinamide adenine dinucleotide (NAD+) to form polymers of ADPribose (PAR) on itself and other target proteins. PARP1 and its catalytic activity are involved in the repair of DNA damages comprising of single and double strand breaks. However, the role of PARP1 in repairing DNA damage without strand breaks has not been readily accepted. For example, although PARP1 is rapidly activated in response to such damages caused by ultraviolet radiation (UV), its role in their repair by nucleotide excision repair pathway (NER) was not generally recognized. Thus, the project of my doctoral work is to determine the exact mechanism by which PARP1 and its catalytic activity influence NER. This pathway uses more than 30 proteins to repair a wide variety of DNA damages. Although we have a good understanding of NER steps through studies in vitro, bacteria and yeasts, we still do not know all the factors that influence the functioning of the NER in higher eukaryotes including humans. Recent studies have shown that chromatin remodelling complexes and post-translational modifications facilitate NER in the context of chromatin. However, the contribution of PARylation, the post-translational modification carried out by PARP1, in NER remains largely unknown. Xeroderma pigmentosum C protein (XPC) plays a crucial role in NER by recognizing the few UV induced lesions in the vast undamaged chromatin. Another key factor in damage recognition is the UV- damaged DNA binding protein (DDB2), which is part of the UV-DDB ubiquitin-ligase complex. Here, we have demonstrated that after UVC irradiation, PARP1 binds asymmetrically to the photolesions and interacts with DDB2. DDB2 stimulates the catalytic activity of PARP1 and in turn it is PARylated. The polymers formed around the photolesion act as recruitment signal for the PARP1-XPC complex already present in the nucleoplasm. The confluence of these repair factors at the damage site ensures the separation of the XPC protein from its complex with PARP1 followed by its transfer and stabilization at the site of damage. Thus, PARP1 is not only one of the first proteins to respond to UV induced DNA damage, but also its early rapid activation plays a key role in the downstream events of NER. Indeed, we have shown that both inhibition and depletion of PARP1 significantly delays the repair of these lesions. This study demonstrates that PARP1 increases the efficiency of NER in cooperation with the DDB2 and XPC proteins in mammalian cells.
Document Type: Thèse de doctorat
Issue Date: 2017
Open Access Date: 24 May 2018
Permalink: http://hdl.handle.net/20.500.11794/29852
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
SizeFormat 
33416.pdf13.62 MBAdobe PDFView/Open
All documents in CorpusUL are protected by Copyright Act of Canada.