Oxyde de tungstène et de molybdène fonctionnalisés par des composés organiques comme catalyseur hétérogène performant pour la coupure oxydante de l'acide oléique en acides carboxyliques

Authors: Enferadi-Kerenkan, Amir
Advisor: Do, Trong ON
Abstract: Oils and fats of vegetable and animal origin have recently attracted a growing interest as renewable raw materials in oleochemical industries. This attention arises from not only the environmental reasons, but also economic ones. Unsaturated fatty acids (UFAs), as the constituent of lipids, can be oxidized to produce mono- and dicarboxylic acids which are applicably valuable materials in different industries. This oxidation process is so-called oxidative cleavage, since during the reaction carbon-carbon double bond(s) get cleaved. The most striking instance is production of azelaic acid, a valuable C9 diacid, from oleic acid (C18:1). Currently, this reaction is carried out in industry via ozonolysis, which, nowadays, has been converted to a controversial challenge due to the hazardous problems associated with use of ozone. Employing an eco-friendlier oxidant requires an active catalyst to be employed, as well. In this research, we have developed advanced heterogeneous catalysts based on tungsten and molybdenum oxides for oxidative cleavage of oleic acid with hydrogen peroxide as oxidant. To find a highly efficient catalyst, different catalysts were prepared and tried including high surface area mesoporous tungsten oxide supported on γ-alumina, nanoparticles (NPs) of different structures of tungsten trioxide (hydrated and anhydrous), tungsten peroxide, and molybdenum oxide, as well as Keggin clusters of polyoxotungstates (POTs). While employing homogeneous catalysts in this reaction has been widely reported, the works on the heterogeneous catalysts are very rare, most probably due to the poor reactant/solid catalyst contact in liquid-phase reactions of lipids resulting in much lower catalytic efficiency of solid catalysts compared to the homogeneous ones. To tackle this obstacle in this research, we leveraged the strategy of organo-functionalization of the solid catalyst’s surface, to not only tune the hydrophobicity/hydrophilicity properties of the surface, but also improve the compatibility of the solid catalysts with the organic substrate, oleic acid, and the aqueous oxidant. For this purpose, different quaternary ammonium cations were employed in the synthesis including cetyltrimethylammonium (CTA+), tetramethylammonium (TMA+), tetrapropylammonium (TPA+), and tetrabutylammonium (TBA+). We have developed a green and straightforward approach for the synthesis and organo-functionalization of tungsten and molybdenum oxide NPs based on oxidative dissolution of micrometer-scale bare W and Mo powders. Interestingly, with some slight modifications in this approach and using larger quaternary ammonium salts in the synthesis we have succeeded to present a novel synthesis method for preparation of hybrid organic-inorganic POTs. In terms of catalytic reaction, application of heterogeneous POT catalysts in oxidation of UFAs has been reported for the first time in this work. The synthesized catalysts, generally, exhibited excellent activity compared to the reported heterogeneous ones. Full conversion of the initial oleic acid, with the highest yield of production of the desired diacid (azelaic acid) ~80 %, was achieved by optimization of the amount of the quaternary ammonium cation on the catalyst’s surface. Thanks to the organo-functionalization, these water-tolerant catalysts exhibited no significant leaching, as well as convenient recovery and steady reuse without noticeable decrease in activity, at least up to four cycles.
Document Type: Thèse de doctorat
Issue Date: 2018
Open Access Date: 23 May 2018
Permalink: http://hdl.handle.net/20.500.11794/29822
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
34193.pdf8.16 MBAdobe PDFView/Open
All documents in CorpusUL are protected by Copyright Act of Canada.