Analyse protéomique de la coordination dynamique par la protéine adaptatrice GRB2 des réseaux de signalisation cellulaire dans le cancer du sein HER2+

Authors: Beigbeder, Alice
Advisor: Bisson, Nicolas
Abstract: GRB2 is an adaptor protein involved in receptor tyrosine kinase (RTK) signaling. By interacting with a wide variety of RTKs as well as cytoplasmic effectors, GRB2 controls the specificity and diversity of cellular responses. GRB2 was shown to be crucial for HER2 RTK downstream signaling to regulate HER2-driven oncogenesis. HER2 is overexpressed in 15-20% of breast tumors (HER2+), and its overexpression is associated with a poor prognosis. Since GRB2 binding to different combinations of receptors and targets regulate downstream cell response, we hypothesized that GRB2 interaction network in a HER2 overexpression context would show new complexes promoting HER2-driven tumour progression. Thus, we sought to identify the GRB2-centered protein interaction network in different HER2+ breast cancer (BCa) models using affinity purifications followed by mass spectrometry analysis of the binding proteins. We identified 35 GRB2 binding partners in human HER2+ BCa cells, including both known (PTPN11) and novel interactors. In fact, 5 GRB2 interactors validated in our study were not previously described in the literature. Furthermore, we showed for the first time that GRB2-dependent signaling networks are modified in HER2+ BCa progression. Indeed, we identified 62 GRB2 binding partners in two tumour progression models, of which 18 were specific to tumour progression since they were not identified in the control conditions. Among these, 6 were not previously reported in the literature. One of the newly identified binding partner of GRB2, MPZL1, is a membrane glycoprotein involved in the metastatic process by promoting cell adhesion and migration on extracellular matrix. As these functions were shown to depend on HER2 signaling through GRB2, we sought to characterize the association further. We showed that MPZL1 interaction with GRB2 requires the glycoprotein phosphorylation, its association to phosphatase PTPN11 as well as the adaptor SH2 domain. Finally, we showed that fibronectin can trigger this complex association and GRB2 membrane recruitment. In conclusion, we identified a new signaling complex in HER2+ BCa that is likely involved in the control of cell adhesion and migration. Thus, we postulate that this complex, as well as other newly identified GRB2 associations, could promote HER2–driven oncogenesis and as such may represent interesting potential drug targets for HER2+ BCa.
Document Type: Thèse de doctorat
Issue Date: 2018
Open Access Date: 7 May 2018
Permalink: http://hdl.handle.net/20.500.11794/29639
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
SizeFormat 
34046.pdf3.97 MBAdobe PDFView/Open
All documents in CorpusUL are protected by Copyright Act of Canada.