Influence du soulèvement au gel sur la durée de vie utile des chaussées

Authors: Sylvestre, Olivier
Advisor: Doré, Guy
Abstract: In cold regions, flexible pavements are constantly submitted to the effects of climate combined with the repeated traffic loads effect. The frost heave of the subgrade soils due to formation of ice lens is among the main mechanism involved in the high degradation rate of the flexible pavement. The relationship between pavement service life and the various pavement degradation mechanisms such as the soil variability, the effects of traffic, the pavement structural capacity and the effect of cracking, is complex to establish in cold regions where frost heave plays a major role in pavement deterioration. The main goal of this project is to present the development of flexible pavement damage models, developed through a multiple linear regression analysis, associating the long-term roughness performance to frost heave and several degradation mechanisms. At a design stage, those models would be essential to evaluate the benefits or consequences to have a frost heave lower, equal or higher than the allowable threshold values established by the Ministère des Transports, de la Mobilité Durable et de l’Électrification des Transports (MTMDET) du Québec according to the roads functional classification. The result illustrated that a significant increase in long-term IRI deterioration rate, usually caused by a more variable subgrade soil, is likely to contribute to the rehabilitation of the pavements before the end of the initial pavement service life. This project will allow the road administrations and contractors to adapt the designs of road infrastructure subjected to frost action according to their needs and design objectives, and to better understand to effect of frost heave on pavement deterioration.
Document Type: Mémoire de maîtrise
Issue Date: 2017
Open Access Date: 24 April 2018
Permalink: http://hdl.handle.net/20.500.11794/28217
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
Description SizeFormat 
33865.pdfTexte9.37 MBAdobe PDFThumbnail
View/Open
All documents in CorpusUL are protected by Copyright Act of Canada.