Cable-driven pantographs

Authors: Perreault, Simon
Advisor: Cardou, PhilippeGosselin, Clément
Abstract: This thesis reports the first steps toward the development of a new family of telemanipulators: cable-driven pantographs (CDPs). We define CDPs as mechanisms designed to reproduce trajectories induced from a master (input) to a slave (output) with a chosen scale factor and using cables in order to transmit corresponding forces or moments. They can also be presented as the combination of conventional pantographs, devices where rigid links are used to transmit forces between the master and the slave, and cable-driven parallel mechanisms (CDPMs). Given that the purpose of this thesis is the design of CDPs which combine reliability, safety and a low manufacturing cost, we have chosen to develop tools that allow the design of purely mechanical CDPs, i.e., no electrical component is necessary to transmit forces between the master and the slave. Several applications can be considered for this new family of pantographs, e.g., the telemanipulation of objects inside environments that are sensitive to electromagnetic disturbances, or simply where electrical energy access is limited. The strict use of cables between the two main components of the pantograph leads to many advantages but also to some inherent drawbacks. The main disadvantage of CDPs is without any doubt the unilaterality of force transmission in the CDPM’s cables. It imposes a reflected cables distribution, i.e., cables must support the end effector in all directions, and a minimum level of tension in order to preserve the system geometry. In general, for a CDPM, the driving electrical motors are used to produce continuous torque (and power) to maintain the cable tensions. In this thesis, we propose a methodology which relies on springs in order to produce these tensions in a purely mechanical manner, leaving to the user the application of the additional forces, i.e., those forces needed to overcome friction, produce accelerations and balance external forces applied at the end effector. This conceptual idea is validated through the design of the prototype of the first planar three-cable two-degree-of-freedom (DoF) CDP. Then, with the objective of minimizing the energy expenditure required by the user, we also suggest to compute nonlinear springs behaviours that maintain the cable tensions to a minimum level, while approximating the static equilibrium of the mechanism over its workspace. The nonlinear springs are in fact embodied as four-bar mechanisms coupled with constanttorque springs. This methodology is illustrated by its application to a modified version of the three-cable two-DoF planar CDP. When designing any CDP (in particular for CDPs with tridimensional workspace), a second drawback must be taken into account. This drawback is the possible occurrence of mechanical interferences between the different cables used to constrain the pose of the end effector from its respective base (this applies to both the master and the slave effectors) when moving in translation, in rotation or both. Thence, in this thesis, we propose a methodology for determining, in a geometrical manner, the interference regions between a pair of cables and between a cable and an end-effector edge for a given orientation within its workspace. It is shown that, for a constant end-effector orientation, these interference regions are defined by plane and line segments belonging to the CDP workspace. Then, this technique allows to determine—exactly and rapidly—the interference regions for a given CDP, and thus provides a powerful tool for optimizing the geometry of this kind of mechanisms. This methodology can also be directly applied to the design of any tridimensional CDPMs. Finally, in order to generate a suitable geometry for a given application, the last part of this thesis details an algorithm to synthesize CDP or CDPM geometries based on three main criteria. The first criterion is based on the wrench-closure workspace (WCW) (which criterion is well known in the literature), whose volume should be maximized. The second and the third ones are based on the free-interference workspace, methodology developed in the previous part of the thesis, whose volumes should also be maximized. As an example, the geometric parameters of a seven-cable nine-edge six-DoF CDPM are optimized to illustrate the relevance of the technique. Then, a medical application is used as a second example, i.e., the dimensional synthesis of an eight-cable seventeen-edge six-DoF CDP intended to be used inside a standard cylindrical magnetic-resonance-imaging (MRI) system for performing simple image-guided biopsies.
Document Type: Thèse de doctorat
Issue Date: 2017
Open Access Date: 24 April 2018
Permalink: http://hdl.handle.net/20.500.11794/28152
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
SizeFormat 
33284.pdf32.47 MBAdobe PDFView/Open
All documents in CorpusUL are protected by Copyright Act of Canada.