Silver-containing diamond-like carbon deposited by plasma as versatile antibacterial coatings

Authors: Cloutier, Maxime
Advisor: Mantovani, D.; Tatoulian, Michael
Abstract: Healthcare-associated infections remain a major cause of mortality and morbidity worldwide, with a substantial financial burden on society, despite decades of monitoring and disinfection efforts. The ability of pathogenic bacteria to survive on solid substrates has emerged as a key contributing factor in the pathogenesis of these infections by multiplying the sources of transmission and contamination. This has prompted investigations into the development of innovative antibacterial coatings, which could provide a complementary barrier against bacterial colonization of surfaces provided that they can withstand the harsh operating environment of healthcare facilities. In this thesis, we hypothesized that an antibacterial coating with superior stability could be deposited using a tailorable plasma process, so that the resulting coatings’ properties could be adapted to match the requirements of different situations or applications. Therefore, silver-containing diamond-like carbon (Ag-DLC) nanocomposite coatings were developed and investigated as a versatile platform material for antibacterial surfaces. The interest of this material lies in the combination of the excellent mechanical properties, wear-resistance and chemical inertness of diamond-like carbon with the broad-spectrum antibacterial properties of silver nanomaterials in a single, plasma-deposited coating. This work first identified the specific design challenges associated with the development of antibacterial coatings for healthcare environments. Thorough investigations of Ag-DLC coatings then revealed good antibacterial efficacy in vitro as well as stability of the coatings’ properties, structure, and chemistry over time. The extent of the tailorability of Ag-DLC coatings was also assessed through the identification of the main growth mechanisms, providing insights on how the film’s properties, such as the hardness, silver content, and silver distribution, could be controlled by adjusting specific plasma deposition parameters. Furthermore, an in situ interface plasma treatment was developed to overcome delamination issues and showed the ability to promote the adhesion of high stress DLC coatings on metallic substrates. Overall, this study highlighted the importance of stability in the application of antibacterial coatings and demonstrated the vast potential of plasma processes for the deposition of stable antibacterial coatings with tunable properties.
Document Type: Thèse de doctorat
Issue Date: 2017
Open Access Date: 24 April 2018
Permalink: http://hdl.handle.net/20.500.11794/27974
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
Description SizeFormat 
33463.pdfTexte7.38 MBAdobe PDFThumbnail
View/Open
All documents in CorpusUL are protected by Copyright Act of Canada.