Synthèse de nanoparticules riches en carbone par polymérisation en dispersion

Authors: Picard-Lafond, Audrey
Advisor: Morin, Jean-François
Abstract: The interest in carbon nanomaterials is expanding due to their potential for various applications. The network of sp²-hybridized carbon atoms, common to all materials of this family, generates excellent electronic and optical properties which are modulated by the shape, the size and the dimensionality of the carbon network. Among these nanomaterials, carbon nanoparticles (CNP) have a singular potential due to their photoluminescence properties, their photostability and their low toxicity. Accordingly, the application of CNP in biomedicine, optoelectronics and photocatalysis is greatly studied. However, the current synthetic methods and separation techniques represent limitations to their implementation. The use of high temperatures (>100 °C) hinders the precise control over shape and size of the CNP, the synthetic yields are low and the materials’ surface is chemically inert. In this project, the objective is to establish a route for CNP synthesis which surpasses the limitations of the current preparation methods. In other words, we are trying to develop a method allowing a precise control of the particles’ shape and size, while avoiding the use of high temperatures. The strategy is based on the dispersion polymerization of alkyne-rich organic units, used as a metastable carbon source. On one hand, the polymerization of alkyne-rich monomers allows the one-step synthesis of polyynes which, due to their instability, react spontaneously to produce a material composed mainly of sp²-hybridized carbon atoms. On the other hand, dispersion polymerization ensures a morphological control of the particles during their synthesis. Adding to the main objective, surface functionalization of the particles is intended by exploiting the reactivity of residual alkynes in the carbon structure. Also, we try to exchange the alkyne-rich monomer in order to improve the photoluminescence properties of the particles obtained from the developed process.
Document Type: Mémoire de maîtrise
Issue Date: 2017
Open Access Date: 24 April 2018
Permalink: http://hdl.handle.net/20.500.11794/27902
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
SizeFormat 
33720.pdf5.49 MBAdobe PDFView/Open
All documents in CorpusUL are protected by Copyright Act of Canada.