Synthesis of functionalised mesoporous silica for capture and transformation of carbon dioxide

Authors: Zakharova, Maria
Advisor: Fontaine, Frédéric-GeorgesKleitz, FreddyLarachi, Faïcal
Abstract: Nowadays over 80% of the chemical industry is based on heterogeneous catalytic processes supplying us with energy, aliments, medicines, crop protection, and new commodities. Even though catalysis remains a strategic field of chemistry, the level of understanding of heterogeneous catalysis is still quite limited, especially when compared to that of homogeneous catalysis. In the present work, we try to expand the knowledge of heterogeneous catalytic systems based on functionalized hybrid mesoporous silica and probe them in different green chemistry processes, especially in relation to the capture and transformation of CO2. For CO2 capture, the well-known concept of frustrated Lewis pairs is translated on the surface of mesoporous silica, resulting in the synthesis of stable heterogenized Lewis acid-base pairs. Firstly, the synthesis of Al-, Ti-, Zr-SBA-15 mesoporous silica carrying very strong Lewis acidic character through the reaction of surface silanol groups with homogeneous metallic complexes is presented. The ability of these materials to catalyse the direct amidation of electron-poor and bulky amines supports the presence of highly active Lewis acidic metallic centers and their water-tolerance. Furthermore, the development of solid supported frustrated Lewis pairs (sFLPs) using Al-, Ti-, Zr-SBA-15 mesoporous silica is discussed. A series of conventional Lewis bases, such as diethylenetriamine, diphenylphosphine derivatives, triethylamine, and tetramethylpiperidine are grafted or impregnated on the surface of Ti-, Al-, Zr-SBA-15 to generate air-stable solid-supported Lewis acid-base pairs. The preservation of both Lewis acidic and basic properties after the solid Lewis acid-base pairs are formed is examined. Study of their interactions with CO2 is performed using solid state NMR spectroscopy and CO2 adsorption experiments, which provides a new insight in their applicability as solid CO2 adsorbents. A correlation between the solid supported Lewis acid-base pair strength and the affinity to CO2 is proposed based on the calculation of isosteric heat of adsorption. For CO2 transformation, the study of confinement effect in silica nanopores and its application in catalytic cycloaddition of carbon dioxide to epoxides is presented. The synthesis of hybrid mesoporous adsorbents of CO2 on the base of MCM-41 and SBA-15 silica is performed and the criteria for an efficient catalytic system are defined and optimised, providing a novel and very efficient heterogeneous catalyst, capable of performing the transformation of carbon dioxide at room temperature under an atmospheric pressure without any chemical pre-activation of starting materials.
Document Type: Thèse de doctorat
Issue Date: 2017
Open Access Date: 24 April 2018
Permalink: http://hdl.handle.net/20.500.11794/27864
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
SizeFormat 
33617.pdf7.69 MBAdobe PDFView/Open
All documents in CorpusUL are protected by Copyright Act of Canada.