Application de la réaction multicomposante de Ugi à la synthèse de peptides complexes

Authors: Jobin, Steve
Advisor: Biron, Éric
Abstract: Oligopeptides and small proteins are useful tools in biochemistry and for molecular development of new therapeutic agents. Their use offers many advantages over small molecules, including a low toxicity and a strong binding on a particular target. Synthesis of such compounds mainly passes through a chemical pathway and works generally quite well. However, some complex peptide’s structures cannot yet be accessed with existing methods, which makes place for the development of new synthesis strategies. The main goal of this work that I did during my two master’s years was to find new synthesis ways to access complex peptidic structures and take advantage of all the chemical diversity available with this class of biomolecules. To do so, Ugi multicomponent reaction on solid support was targeted as a useful chemical tool that could help us to achieve the synthesis of new complex and macrocyclic peptides. First, this reaction was applied in a solid supported fragment coupling approach to access long peptides. This strategy does not require any prereactionnal modification of the building blocks, nor needing specific amino acids and does not exhibit any sign of epimerization at the ligation site. These characteristics make this method very interesting as an alternative synthetic method for long peptides production. The Ugi reaction was then used to form, in a one-pot fashion, an amide bond between two amino acids while creating another bond with a solid supported aldehyde acting as a linker. The main goal of this new approach is to allow the synthesis of head-to-tail cyclic peptides on solid-support. This method was applied to the synthesis of linear, cyclic and bicyclic peptides which would be useful in the development of new therapeutics. In conclusion, the Ugi multicomponent reaction was used for the synthesis of complex peptides. The developed methodologies allow synthesising new peptides that are unavailable up to now by chemical synthesis and that could exhibit some bioactive properties.
Document Type: Mémoire de maîtrise
Issue Date: 2017
Open Access Date: 24 April 2018
Permalink: http://hdl.handle.net/20.500.11794/27856
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
Description SizeFormat 
33599.pdfTexte7.73 MBAdobe PDFThumbnail
View/Open
All documents in CorpusUL are protected by Copyright Act of Canada.