Rôle des protéines et des acides gras trans laitiers dans la variabilité de la réponse inflammatoire aux produits laitiers

Authors: Da Silva, Marine
Advisor: Rudkowska, Iwona
Abstract: Epidemiological data reported that an adequate dairy product consumption may lower the incidence of type 2 diabetes (T2D), a chronic disease which may concern 10.8 % of Canadians by 2020. Although the mechanisms underlying this association remain unclear, it has been suggested that dairy product intake may improve low-grade systemic inflammation, a key etiologic factor in the development of T2D. However, dairy products have mixed effects on inflammatory markers in clinical studies. The effect of dairy products could be mediated by the inflammatory status of the participants, as well as the nutrient composition of dairy products. Dairy products contain proteins, amino acids and fatty acids, specifically natural trans fatty acids, for which the effect on inflammation remains unclear. Furthermore, it has been demonstrated that dairy nutrients can regulate inflammatory gene expression. Nevertheless, a mechanistic approach is required to elucidate the role of dairy products on inflammation and the prevention of T2D. Accordingly, we tested the hypothesis that the effect of dairy products on inflammation was influenced by the inflammatory status of the individuals and the macronutrient composition of dairy products. Therefore, the main objective of this thesis was to evaluate the contribution of those two factors on inflammation. Firstly, dietary, anthropometric and biochemical data from two cohorts of individuals recruited in Quebec City were assessed. Results show that dairy product consumption is inversely correlated with glycaemia and blood pressure in healthy individuals. Dairy intake is also slightly correlated with plasma C-reactive protein (CRP) concentrations, without influencing other inflammatory markers (tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6)). Moreover, concentrations of dairy trans fatty acids in plasma phospholipids are associated to high-fat dairy product consumption, as well as favorable adiponectin levels and blood pressure. Secondly, we developed cell models, with or without induction of inflammation with TNF-α, to identify bioactive dairy nutrients. Cells were incubated for 24 hours with individual or combinations of dairy trans fatty acids, proteins or amino acids. Dairy trans fatty acids and dairy protein compounds do not influence inflammatory gene expression in healthy cells. Oppositely, dairy trans fatty acids, whey proteins and their major amino acids (leucine, isoleucine and valine) decrease inflammatory gene expression in TNFα-stimulated endothelial cells. Dairy trans fatty acids also lower prostaglandin excretion; yet they increase F₂-isoprostane levels in cell supernatants. Moreover, dairy trans fatty acids are highly incorporated into cell membranes, which modifies fatty acid profiles and possibly impairs the function of membrane receptors. Finally, co-incubation of dairy trans fatty acids and dairy protein compounds have neither an additive nor a synergic effect on inflammatory gene expression and eicosanoid levels in endothelial cells. The present work suggests a beneficial impact of dairy trans fatty acids and whey proteins on inflammation. Further, the anti-inflammatory effect of these nutrients appears only in inflamed cells, which favors the hypothesis that dairy products may positively impact inflammation according to the inflammatory status of the individuals. The cellular approach is a useful tool to investigate the impact of the different sources of variability regarding inflammatory response to dairy products. Further investigations in vivo are required to validate the major sources of variability in animal models or in humans.
Document Type: Thèse de doctorat
Issue Date: 2017
Open Access Date: 24 April 2018
Permalink: http://hdl.handle.net/20.500.11794/27793
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
33474.pdf3.73 MBAdobe PDFView/Open
All documents in CorpusUL are protected by Copyright Act of Canada.