Développement et amélioration d'un polymère issu de la biomasse et provenant en partie du bois

Authors: Auclair, Nicolas
Advisor: Riedl, BernardLandry, Véronic
Abstract: Crude oil and its derivatives are used to synthesize thousands of organic compounds, but they are non-renewable and harmful to the environment. The coating industry is dependent on fossil fuels. Besides, the forest industry has faced a crisis during the past several years. Then, the substitution of fossil fuels by value added wood products could solve these environmental and economic issues. In fact, the main objective of this study is to develop and improve a polymer from biomass, more specifically for the coating industry. In addition, it aims to promote the use of underutilized materials in wood, like bark. Betulin is a triterpenoid extracted from white birch. Its interesting molecular structure can be modified for use within polymer synthesis. Soybean oil, a vegetable oil, is increasingly used to develop new coating because of its interesting properties. However, vegetable oils are less efficient than the ones from fossil fuels. To enhance theirs properties, vegetable oils are often modified, for example by grafting acrylate functionalities. Moreover, the use of a comonomer or a reinforcing agent can enhance some of the vegetable oil properties. Cellulose nanocrystals (CNC) is a material from biomass which has potential to improve coating properties. However, CNC has low compatibility with non-polar polymer matrices, like acrylates, but can be modified to improve its compatibility. First, the idea is to combine acrylated epoxidized soybean oil (AESO) with a comonomer from betulin. To obtain a compatible comonomer with the AESO matrix, betulin has been acrylated. FTIR and NMR spectroscopy analyses have been used to characterize and confirm the modification of betulin. Also, GC-MS analysis has been done to verify if betulin was mainly mono or diacrylated. Then, to verify the effects of the comonomer on the curing behavior and thermal stability of AESO matrix, photo-DSC and TGA analyses have been used respectively. Moreover, optical properties (transparency and color measurements) have been measured to verify the impact of the comonomer on the appearance of the coating film. Finally, to evaluate the performance of the new polymer to be used as a coating, various tests have been performed, like abrasion resistance, hardness and tensile tests. Secondly, two different modified CNC (HDTMA-CNC and acrylated CNC) have been used as reinforcing agent with AESO matrix. To verify the impact of the CNC on the mechanical properties of the new nanocomposites, tensile test and nanoindentation technique have been used. Lastly, to evaluate the performance of the new composites, various tests and analyses have been performed, like hardness test; thermal stability; curing behavior; surface roughness; transparency and glass transition measurements.
Document Type: Thèse de doctorat
Issue Date: 2017
Open Access Date: 24 April 2018
Permalink: http://hdl.handle.net/20.500.11794/27715
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
Description SizeFormat 
33323.pdfTexte4.5 MBAdobe PDFThumbnail
View/Open
All documents in CorpusUL are protected by Copyright Act of Canada.