Implication de PRMT1 et de la méthylation d'arginines dans la signalisation cellulaire et l'expression des facteurs de transcription induits par l'hypoxie (HIF)

Authors: Lafleur, Véronique
Advisor: Richard, Darren Edward
Abstract: Hypoxic conditions occur under specific environmental et physiological situations, as well as in different pathological contexts. Due to the crucial requirement of oxygen for vital biological functions, complex mechanisms have evolved to ensure adequate cellular adaptation to hypoxic stress. Such adaptation is induced by a rapid and highly controlled transcriptional response. The study of this response is essential for the comprehension of its consequences, particularly in the context of pathologies associated with hypoxic conditions, such as tumor progression. Hypoxia-inducible factors (HIFs), are central and essential mediators of the adaptive transcriptional response to hypoxic stress. They are responsible for the induction of numerous genes regulating the physiological, cellular and molecular processes necessary for this adaptation. HIF-1 and HIF-2 are the main members of this family of transcription factors and share common, as well as distinct and complementary, fonctions. Their activities are dependent on their respective HIF-α subunits, HIF-1α and HIF-2α. Diverse mechanisms converge in order to allow precise modulation of HIF-α subunits in accordance to hypoxic and cellular contexts. This implicates positive as well as negative regulators, acting in a coordinated fashion. The study of these mechanisms is of considerable interest for the comprehension of cellular adaptation to hypoxia. Studies suggest a role for arginine methylation in the hypoxic stress reponse. Therefore, this thesis aims at evaluating the role of the protein arginine methyltransferase PRMT1 in HIF-α regulation. We characterize PRMT1 as a novel repressor of HIF1A and HIF2A gene transcription. This repression is caused by the inhibition of Sp1/3 transcription factors, known HIF1A and HIF2A gene regulators. The investigation of the underlining mechanism allowed us to describe a new role for PRMT1 in the ERK signaling cascade. Indeed, we demonstrate that PRMT1 interacts with the Rho GEF DOCK6, repressing downstream ERK1/2 kinases. This results in reduced Sp1/3 phosphorylation and activity. Finally, we reveal an interesting hypoxia-related dynamic, where a distinct temporal repression of HIF1A and HIF2A occurs under hypoxic conditions. This thesis higlights a new regulatory mechanism of HIF-α subunits and underlines the importance of their transcriptional repression in cellular adaptation to hypoxia. This thesis therefore contributes to the knowlegde surrounding the highly dynamic and complex regulation of HIF transcription factors, essential mediators of cellular homeostasis.
Document Type: Thèse de doctorat
Issue Date: 2017
Open Access Date: 24 April 2018
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
33095.pdf20.09 MBAdobe PDFView/Open
All documents in CorpusUL are protected by Copyright Act of Canada.