Effet de la cristallinité sur la perméabilité aux gaz de films à base d'acide polylactique

Authors: Ghassemi, Amir
Advisor: Rodrigue, DenisDuchesne, Carl
Abstract: The main purpose of this work is to determine the effect of crystallinity on the gas permeation of polymer films. In particular, polylactic acid (PLA) was used as the matrix and various gases were selected (nitrogen, carbon dioxide, hydrogen, methane and oxygen) for the gas transport properties. To this end, the work was divided into three parts. In the first part, talc was used as a nucleating agent to modify the crystallinity of PLA. In this case, it was noted that the gas permeability and the diffusion coefficient were reduced with increasing talc content (0-3% by weight). It was also observed that increased crystallinity was related to heterogeneous nucleation, but had limited effect on mechanical properties, with the exception of strain at break. However, the transport properties were decreased. In the second part, annealing time was used to modify PLA crystallinity with 0% and 3% talc. In this case, it was found that gas permeability and diffusion coefficient were lowered with higher annealing time (up to 40 min). It was also observed that higher crystallinity did not change the mechanical properties except for the Young’s modulus. Finally, annealing temperature was modified to improve the crystallinity of neat PLA and 3% talc composite. While gas permeability and diffusion coefficient both decreased with increasing annealing temperature (from 60 to 120°C), crystallinity changes did not significantly modify the mechanical properties, except for the Young’s modulus and strain at break of the 3% talc composite.
Document Type: Mémoire de maîtrise
Issue Date: 2016
Open Access Date: 24 April 2018
Permalink: http://hdl.handle.net/20.500.11794/27402
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
SizeFormat 
33113.pdf2.47 MBAdobe PDFView/Open
All documents in CorpusUL are protected by Copyright Act of Canada.