Influence du miR-155 vésiculaire sur la pathogenèse associée à l'infection par le virus de l'immunodéficience humaine de type 1 (VIH-1)

Authors: Hubert, Audrey
Advisor: Gilbert, Caroline
Abstract: Several aspects of the immune response are irreversibly dysregulated during the acute phase of HIV-1 infection leading to a generalized immune activation and inflammation which are involved in immune cells depletion and disease progression. Our previous work revealed a higher production of extracellular vesicles (EVs) called exosomes by HIV-1 pulsed dendritic cells (DCs). These exosomes displayed pro-apoptotic effect on CD4 T lymphocytes (CD4 TL), and thus increase the depletion of these cells, already initiated by the infection itself. Produced by a wide variety of cells and released into body fluids, EVs, which reflect cellular origin, are believed to function as messengers in intercellular communication delivering proteins and genetic material (RNA, microRNA) to neighboring cells. By their content, EVs are involved in various biological processes including the modulation of immune responses. Based on these data and the involvement of microRNAs in immune response modulation, the hypothesis assuming the role of EVs in the establishment and maintenance of immune disruptions during HIV-1 pathogenesis, notably through their microRNA content, has emerged. My doctoral research showed a specific profile of plasma EVs associated with clinical status of HIV-1 infected patients. The amount and size of EVs present in the plasma of HIV-1- infected patients’ naïve for treatment were higher than those from healthy individuals and correlate with CD4 TL depletion or CD4/CD8 ratio decrease, which are considered markers of disease progression. These data highlight the biomarker potential of EVs. Furthermore, microRNAs are enriched in EVs, including miR-155, previously described in different immune responses. Subsequent inoculation of EV-borne miR-155-enriched-virus in a humanized mouse model revealed that vesicular miR-155 can contribute to the development of immune disruptions and the progression of HIV-1-associated pathogenesis. To conclude, a greater understanding of the mechanisms involved in miR-155 enrichment in EVs would help to control the immune exhaustion characteristic of HIV-1 infection and, on long-term, would open new perspectives for therapies.
Document Type: Thèse de doctorat
Issue Date: 2016
Open Access Date: 24 April 2018
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
32841.pdf11.49 MBAdobe PDFView/Open
All documents in CorpusUL are protected by Copyright Act of Canada.