Revêtement intelligent à base des silices mésoporeuses fonctionnalisées pour le relargage stimulé d'agents antimicrobiens

Authors: Mejri, Eya
Advisor: Greener, Jesse
Abstract: Bacterial biofilms are composed of single-cell organisms living within a protective matrix formed from natural macromolecules. Unwanted biofilms may have a number of adverse consequences such as reducing heat transfer in heat exchangers, obstruction of porous membranes, surface contamination ships hulls etc. In addition, pathogenic bacteria growing in a biofilm also pose a health hazard when this kind of film is found attached to biomedical implants, catheters, or on contact lenses. The presence of biofilms is difficult to treat because the bacteria are highly resistant to antimicrobial agents. In an attempt to address these problems, we propose to develop an antifouling surface which releases on demand antimicrobial agents in the presence of a biofilm. The proximity and the positioning of the delivery system of bioactive agents under the biofilm will ensure a more efficient use of antimicrobial molecules and minimize side effects of the latter. To do this, we consider the use of layers of colloidal particles of meso-porous silica as delivery agents of antimicrobial agents. Mesoporous silica nanoparticles (NPS Ms) have demonstrated a strong potential for targeted delivery of therapeutic and bioactive agents. Their use in nanomedicine stems from their interesting properties of porosity, the size and the adjustable shape of these particles, their surface chemistry providing a great flexibility for various functionalizations. Moreover, it is possible to load them with various molecules or biomolecules (of various sizes, ranging from ibuprofen to RNA), and exert fine control of the adsorption parameters and release kinetics (desorption). These particles also demonstrate excellent biocompatibility in vitro and in vivo. Keywords : biofilm, mesoporous nanosilica particles, microfluidics, antifouling surfaces.
Document Type: Mémoire de maîtrise
Issue Date: 2016
Open Access Date: 24 April 2018
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
32803.pdf3.44 MBAdobe PDFView/Open
All documents in CorpusUL are protected by Copyright Act of Canada.