Conception mécaniste-empirique des chaussées non revêtues

Authors: Le Vern, Mickaël
Advisor: Doré, Guy
Abstract: Unpaved roads generally undergo heavy loads. For this reason, a rigorous design method based on mechanistic-empirical principles and on subgrades mechanical behaviors for unpaved roads is needed. A mechanistic design approach, combined with empirical damage laws, will optimize unpaved road structures and reduce maintenance and construction costs. Therefore, the purpose of this project is to create a mechanistic-empirical method for the design of unpaved roads. First, a calculation model was developed in order to determine the level of stress and strain in the pavement structure This model consists of an elastic multilayer road, using Odemark’s transformation and Boussinesq’s equations. Then, empirical damage curves for unpaved roads were developed. Finally, this work produced design charts. A two-step approach was adopted for the development of the transfer functions. The first step established rutting threshold values according to suitable functional and structural road conditions. Then, an allowable strain criterion that combines the calculated theoretical strains with the observed strains on real roads was developed. Laboratory testing took place on typical roads samples. The tests were carried out using a vehicle load simulator. The instrumentation of the structures was designed to measure the resilient and permanent vertical deformation at the top of the subgrade. The rutting rate was also measured during the tests.
Document Type: Mémoire de maîtrise
Issue Date: 2016
Open Access Date: 24 April 2018
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
Description SizeFormat 
32746.pdfTexte9.08 MBAdobe PDFThumbnail
All documents in CorpusUL are protected by Copyright Act of Canada.