Novel inhibitors of the tRNA-dependent amidotransferase of "Helicobacter pylori" : Peptides generated by phage display and dipeptide-like compounds

Authors: Pham, Van Hau
Advisor: Lapointe, Jacques
Abstract: This thesis describes the discovery of inhibitors of a tRNA-dependent amidotransferase (AdT) and summarizes the present state of our knowledge about the two-step biosynthesis of Gln-tRNAGln and Asn-tRNAAsn in Helicobacter pylori. In eukaryotic cytoplasm, twenty amino acids (aa) are generally attached to their cognate tRNAs by twenty corresponding aminoacyl-tRNA synthetases (aaRSs). These enzymes have a high specificity, and their function is important to the proper decoding of mRNA. However, in a number of bacteria including H. pylori, GlnRS and/or AsnRS are absent. To synthesize Gln-tRNAGln, H. pylori first uses a noncanonical GluRS2 which is specific for tRNAGln to form Glu-tRNAGln; then the trimeric AdT (GatCAB) transforms Glu-tRNAGln into Gln-tRNAGln which is proper for protein biosynthesis. In a similar manner, the biosynthesis of Asn-tRNAAsn also takes place in H. pylori by using the same GatCAB and a canonical nondiscriminating AspRS. The widespread use of these indirect pathways among prominent human pathogens, and their absence in the mammalian cytoplasm, identify AdT as a promising target for the development of new and highly specific antimicrobial agents. By using phage display, we discovered several cyclic peptides rich in tryptophan and proline that inhibit H. pylori GatCAB. Peptides P10 (CMPVWKPDC) and P9 (CSAHNWPNC) are competitive inhibitors of GatCAB with respect to its substrate Glu-tRNAGln. The inhibition constants (Ki) of P10 and P9 are 126 and 392 μM, respectively. Their docking models revealed that they bind to the transamidation active site of GatB via π-π stacking interactions with Tyr81, as does the 3’-terminal A76 of tRNA. We also discovered two small dipeptide-like sulfone-containing inhibitors of H. pylori GatCAB by mimicking the intermediate of its transamidation reaction. Although they are much smaller than the cyclic peptides mentioned above, they are competitive inhibitors of GatCAB with respect to GlutRNAGln, with Ki values of 139 μM for compound 7 and 214 μM for compound 4. These inhibitors could be useful not only to study the reaction mechanisms of GatCAB, but also could be lead compounds for the development of a new class of antibiotics to treat infections caused by H. pylori.
Document Type: Thèse de doctorat
Issue Date: 2016
Open Access Date: 24 April 2018
Permalink: http://hdl.handle.net/20.500.11794/27079
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
Description SizeFormat 
32670.pdfTexte14.82 MBAdobe PDFThumbnail
View/Open
All documents in CorpusUL are protected by Copyright Act of Canada.