Évaluation du contrôle sensorimoteur chez les patients ayant une scoliose idiopathique de l'adolescent : vers un biomarqueur des troubles sensorimoteur basé sur la stimulation vestibulaire galvanique

Authors: Pialasse, Jean-Philippe
Advisor: Simoneau, Martin
Abstract: Scoliosis is the most frequent spinal deformity in adolescence. In 80% of the cases, it is idiopathic, meaning that no cause has been associated with the patient's case. Idiopathic scoliosis seems to respond to a multifactorial model including genetic, environmental, neurological, hormonal, biomechanical and skeletal growth factors. A neurological assumption is that an anomaly of the vestibular system would cause asymmetrical activation of the vestibulospinal pathway and of paraspinal muscles. This cascade would generate the scoliotic deformity. Animal models have demonstrated this possibility. In addition, many vestibular related anomalies are observed in adolescents with scoliosis as vestibulo-ocular reflex abnormalities or balance control disorders. Galvanic vestibular stimulation allows exploring sensorimotor control by faltering the vestibular afferents. The objective of this thesis is to explore the sensorimotor control through vestibular-evoked postural response in patients with scoliosis and healthy controls. The results of the first study show that the vestibular-evoked postural response is larger in patients compared to controls. Moreover, the amplitude of the postural response is not scaled to the spinal deformation amplitude. In a second study, through a neuromechanical feedback control model, we demonstrate that patients assigned a larger weight to vestibular signal compared to controls. Results of the third study reveal that young adults with idiopathic scoliosis, compared to controls, have a larger postural response. This observation excludes a transient response due to the maturation of the nervous system. Then, balance control impairment seems secondary to a neurosensory phenomenon as balance control dysfunction is observed in patients who had surgery reducing spine deformation. Ultimately, an algorithm has been developed to distinguish patients with or without sensorimotor control problems compared to healthy adolescents. Remarkably, the amplitude of the feedforward vestibular response of these patients is larger and they assign a larger weight to vestibular than proprioceptive information. Overall, this thesis proposes a procedure to identify patients with scoliosis having sensorimotor control impairment. In the end, it is believed that the classification procedure may help future clinical studies as patients with sensorimotor dysfunction could be identified. Hopefully, future research will enhance this procedure and lead to an efficient biomarker.
Document Type: Thèse de doctorat
Issue Date: 2015
Open Access Date: 24 April 2018
Permalink: http://hdl.handle.net/20.500.11794/26968
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
Description SizeFormat 
31614.pdfTexte5.45 MBAdobe PDFThumbnail
All documents in CorpusUL are protected by Copyright Act of Canada.