Implication de la protéine Girdin dans la régulation des jonctions d'adhérence et de la polarité épithéliale chez Drosophila melanogaster

Authors: Houssin, Élise
Advisor: Laprise, Patrick
Abstract: The human Girdin protein is overexpressed in various cancers, and promotes cell migration and invasion. This suggests that Girdin contributes to tumor progression. Recently, it was shown that Girdin directly interacts with Par-3. This interaction is essential for cell polarization associated with directed cell migration. Par-3 and its Drosophila ortholog Bazooka are also known for their role in the establishment and maintenance of epithelial cell polarity and adherens junction (AJ) formation. Epithelial polarity, which is characterized by the asymmetric distribution of many cellular constituents, is necessary for epithelial tissue function and homeostasis. Indeed, loss of several epithelial polarity regulators leads to epithelial to mesenchymal transition. We thus hypothesized that Girdin plays a role in epithelial polarity and/or cell-cell adhesion, as reported for its binding partner Par-3. In order to test this premise in vivo, we generated null alleles of Girdin, which encodes the Drosophila ortholog of Girdin, and established specific anti-Girdin antibodies. First, we demonstrated that Girdin is mainly expressed during embryogenesis. In embryonic epithelial cells, it is predominantly associated with the plasma membrane and enriched at AJ. Girdin mutant embryos present several morphogenetic defects including the formation of ectopic epithelial cell cysts and opening of the ventral midline, suggesting that loss of Girdin weakens cell-cell adhesion. Consistent with this phenotype, the association between AJ components, including Armadillo (β-catenin) and DE-Cadherin (DE-Cad), and the cytoskeleton decreases in Girdin mutant animals. These results suggest that Girdin participates in AJ stability. We then investigated the implication of Girdin in epithelial polarity. Although we could not observe any epithlelial polarity defects in Girdin mutants, we found strong genetic interactions between Girdin and three genes encoding polarity regulators : crb, yrt and lgl. Together, our data identifies Girdin as a novel regulator of epithelial cell polarity and cell-cell adhesion. These results thus reveal unsuspected roles for Girdin related proteins. Comprehensive analysis of Girdin function is essential to evaluate whether it is an appropriate target to treat cancer.
Document Type: Thèse de doctorat
Issue Date: 2016
Open Access Date: 23 April 2018
Permalink: http://hdl.handle.net/20.500.11794/26590
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
SizeFormat 
32179.pdf15.58 MBAdobe PDFView/Open
All documents in CorpusUL are protected by Copyright Act of Canada.