Les nanoparticules de silice mésoporeuses comme sondes pour l'imagerie biomédicale - purification, études in vitro et in vivo

Authors: Laprise-Pelletier, Myriam
Advisor: Fortin, Marc-AndréKleitz, Freddy
Abstract: Mesoporous silica nanoparticles (MSNs) are increasingly used in medical imaging and drug delivery applications. They are still not approved for the clinic; however, these products have been used in several preclinical studies, and are being evaluated for clinical trials. Our group demonstrated that MSNs labeled with paramagnetic elements are efficient as contrast agents for magnetic resonance imaging (MRI). The open porosity of these products leads to interesting applications for drug delivery under medical imaging. This master’s degree project has focused on the preparation of MSNs labeled with paramagnetic elements, for applications in cellular imaging, and vascular imaging. First, MSNs labeled with paramagnetic element (Mn) were used to label and to visualize cells in MRI. These products were subjected to a physico-chemical characterization study, and a cellular labelling study. It was demonstrated that Mn-MSNs nanoparticles internalized in leukaemia mouse cells are visible using MRI. However, before cells treatment, just like for the preparation of MSNs suspension for intravascular injection, it is necessary to purify nanoparticles from the potentially toxic paramagnetic metal ions (Gd3+, Mn2+). To facilitate and accelerate the purification time, a size exclusion chromatography method was developed, optimized and applied to MSNs labelled with paramagnetic (Gd3+) and radioactive (64Cu2+) ions. The development of this technique was essential to purify MSNs from both Gd3+ and 64Cu2+, which were then injected in mice, and visualized with MRI and positron emission tomography (PET). These studies have made it possible to measure the biodistribution of MSN over 48 h in the mouse model. PET dynamic biodistributions studies allow a better understanding of biodistribution, organ retention, and excretion of MSNs nanoparticles developed as potential drug vectors.
Document Type: Mémoire de maîtrise
Issue Date: 2015
Open Access Date: 23 April 2018
Permalink: http://hdl.handle.net/20.500.11794/26361
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
31403.pdf11.06 MBAdobe PDFView/Open
All documents in CorpusUL are protected by Copyright Act of Canada.