Development of a fractionation process for the preparation of a folate-enriched protein extract from hen egg yolks

Authors: Naderi, Nassim
Advisor: Pouliot, YvesHouse, James D.
Abstract: Fractionation of egg yolk is a smart way to expand the application of egg yolk ingredient in food and nutraceutical industry. The goal of this project was to develop non-toxic fractionation process of egg yolk by using centrifugation in order to prepare a natural folate-enriched extract. The egg yolk has been considered as a by-product of egg separation process due to its high cholesterol content. However, egg yolk contains valuable and bioavailable form of folate. Dilution of egg yolk and its fractionation into granule and plasma by centrifugation technique (lab- and pilot-scale centrifuge) resulted in separation of a granule fraction being rich in folate which was 3 fold higher than native egg yolk. This granule fraction was also characterized by high protein concentration (2 fold higher than protein content of yolk) and lower lipid and cholesterol (3 fold) content compared to non-treated egg yolk. The granule fraction appeared to be non-soluble with a very compact structure. By using the pre-treatments techniques such as increasing ionic strength and mechanical treatments (ultrasound and high hydrostatic processes), we attempted to re-suspend granules and separate them by centrifugation in order to further increase folate concentration. Results demonstrated that ultrasound and increased ionic strength did not largely change folate concentration. At ionic strength 0.15 M NaCl and after 10 min of ultrasound treatment granule contained 21 μg folate/g granules. By increasing ionic strength higher than 0.15 M NaCl the folate concentration was lower in granule due to the disruption of granule structure and separation of soluble fraction of granule. The observations denoted that there might be association between granular protein structure and folate content. Changes in solubility and disruption of granule network structure by increasing ionic strength affected folate content of granule structure. However, granules appeared to have very stable structure under the ultrasound and after increasing ionic strength, and their modifications were not easily possible. The high hydrostatic pressure processing (HHP) was used as an innovative and powerful technique in order to study the effect of high and drastic pressure on the concentration of folate in granules. After 5 min of 600 MPa HHP treatments, the folate concentration was measured in granule and separated plasma from granule after centrifugation. Plasma from granule contained higher concentration of folate compared to the precipitated granule. SDS-PAGE analysis was used in order to verify the granule protein profiles as a function of HHP treatment. Interestingly, the plasma separated from granule after HHP treatment contained phosvitin as a leading protein band separate in SDS-PAGE gel. The results of our study allowed proposing a schematic model for the granule structure which contains HDLs, phosvitin and LDLs. Beside; granule contains large amount of folate. Proteins of granule are mostly phosphorylated and strong connection between apoproteins of HDLs and phosvitin exists through calcium phosphate bridges. LDL particles were liberated through mechanical treatments and might be entrapped in the granular network. The interconnection between the apoproteins of HDLs, phosvitin and folate could be through calcium ions. Our results provided highly promising evidences concerning the recovery of high-concentration folate extract from hen egg yolk. Our fractionation technique is also clean but it generates plasma as co-product that is still usable in food formulation. Such applications still need to be developed before the technology can be viable at commercial scale.
Document Type: Thèse de doctorat
Issue Date: 2015
Open Access Date: 23 April 2018
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
Description SizeFormat 
31915.pdfTexte3.9 MBAdobe PDFThumbnail
All documents in CorpusUL are protected by Copyright Act of Canada.