Rational design of mesoporous materials with Core/shell structures with applications for sustainability

Authors: Sun, Zhen Kun
Advisor: Kaliaguine, S.; Mahinpey, Nader
Abstract: Mesoporous materials, especially ordered ones have become ones of great importance nanomaterials, which possess regular, uniform and interpenetrating mesopores in nanoscale. Morphology and texture controls towards mesoporous materials are critical for a variety of practical applications, the ultimate goal of which are the realization of their functional design. Core/shell composite materials are a type of functional hybrid materials which not only possess the properties of the individual components, but also exhibit some new or synergistic effects between the core and the shell. The design of mesoporous materials with unique core/shell configuration and multifunctions to make them successfully applied in practice, should be an important driving force for the continuous development of current material science. This thesis mainly focuses on two aspects: (1) careful design of core/shell structured mesoporous materials in order to solve the problem and difficulty in synthesis, which hinders their further applications and (2) application of mesoporous materials in cyclic CO2 capture to enhance the durability of CO2 sorbents by taking advantage of the core/shell concept. Aiming at the calcium looping cycle, an attractive technology for large-scale CO2 capture, we have prepared novel mesoporous core/shell structured CaO-based sorbents which exhibit highly stable cyclability and excellent attrition-resistance performances, attributed to advantages of both mesoporous materials and unique core/shell configuration. Our fabrication method could easily be realized in large-scale and meet the requirements of circulating fluidized bed reactors. Owing to their high surface energies, metallic nanoparticles normally tend to aggregate together during catalytic reactions, and their separation from a complex heterogeneous system is another obstacle. In this regards, we have demonstrated a facile and versatile synthesis of multicomponent and multifunctional microspheres Fe3O4@C-Pd@mSiO2 with well-defined core/shell structures, confined catalytic Pd nanoparticles and accessible ordered mesopore channels. Recently, various methods have been proposed for coating mesoporous shells on cores by soft-templating process. However, the generated mesopores are usually very small (< 3 nm), which may limit their further applications. In this work, we have accomplished the synthesis of superparamagnetic core/shell structured microspheres possessing an outer shell of ordered mesoporous silica with large pores (4.5 nm) by adopting triblock-copolymer Pluronic P123 as soft-template.
Document Type: Thèse de doctorat
Issue Date: 2015
Open Access Date: 23 April 2018
Permalink: http://hdl.handle.net/20.500.11794/26106
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
31671.pdf46.02 MBAdobe PDFView/Open
All documents in CorpusUL are protected by Copyright Act of Canada.