Caractérisation des effets de l'érythropoïétine sur la sensibilité chimique à l'O2 et au CO2 chez la souris

Authors: Khemiri, Hanan
Advisor: Soliz, Jorge; Gestreau, Christian
Abstract: Erythropoietin (EPO) is a cytokine that plays a major role in O2 homeostasis. Upon chronic hypoxia, EPO stimulates the maturation of erythroid progenitors into red blood cells, contributing to increased O2 carrying to tissues. Besides this well-known erythropoietic effect, EPO also modulates the respiratory response to hypoxia by interacting with the central respiratory network in the brainstem and the peripheral chemoreceptors. This effect was mainly characterized in adult mutant mice that overexpress EPO. Several aspects regarding EPO’s effect on breathing regulation remain unknown. By using electrophysiological, pharmacological and plethysmographic approaches, we characterized 1) the acute effect of exogenous EPO on the respiratory network during the postnatal period, in which this system undergoes profound changes, 2) the effects of acute and chronic exogenous EPO administration and its non erythropoietic derivative carbamylated EPO (C-EPO) on ventilatory response to varying O2 levels in adult wild type mice (WT), 3) the EPO’s effect on the CO2 sensitivity at central and/or peripheral levels in adult mutant mice which overexpress EPO, the CO2 being a strong stimulus of the central respiratory network. Our results show that acute EPO treatment increases the O2 sensitivity of the central respiratory network in newborn mice in vitro. However, EPO does not impact the hypoxic ventilatory response to hypoxia in vivo, but decreases the apneic events during severe hypoxia in mice at postnatal day 7. In WT adults, chronic but not acute EPO and C-EPO treatment increases the O2 sensitivity by stimulating both the peripheral chemoreceptor and the central respiratory network. Finally, both cerebral and plasmatic EPO blunt the ventilatory response to increased CO2 levels in adult mice. Taken together, these results imply that EPO, by acting on the ventilatory system, plays a key role in the modulation of the chemical sensitivity to O2 and CO2. Thus, EPO may have a potential clinical interest in the treatment of some chronic respiratory diseases where O2 and CO2 homeostasis are altered, such as neonatal apnea or chronic mountain sickness.
Document Type: Thèse de doctorat
Issue Date: 2015
Open Access Date: 23 April 2018
Permalink: http://hdl.handle.net/20.500.11794/26058
Grantor: Université Laval
Collection:Thèses et mémoires

Files in this item:
Description SizeFormat 
31198.pdfTexte5.29 MBAdobe PDFThumbnail
View/Open
All documents in CorpusUL are protected by Copyright Act of Canada.